We propose a new, to the best of our knowledge, compound technique to measure high-dynamic-range blood flow rate in a large-diameter vessel, which combines the dynamic scattering light (DLS) and the laser speckle contrast imaging (LSCI) methods, possessing the advantages of the high temporal resolution of DLS and the robust property of LSCI. By controlling the second-order spatial correlations of the laser speckle through two imaging systems, the speckle temporal intensity autocorrelation function g 2 ( t ) and the decorrelation time τ c are directly measured using a high-speed camera. It turns out the enhanced spatial second-order correlation helps to measure the blood flow with higher dynamic range and that the measured parameter β and the blood flow dynamics n were accurately determined. For further improvement the dynamic range, the modified LSCI method was adopted, and the decorrelation time as a function of blood flow rate was constructed. It reveals the feasibility of measuring the high flow rate in large-diameter vessels and provides significant guidance for the future biomedical study of the myocardial perfusion in coronary artery bypass grafting, ghost imaging, and ghost cytometry.
The blood flow in the coronary artery (CA) is pulsatile and much higher than that measured in the brain, retina, and skin before. Its quantitative measurement is medically significant in the coronary artery bypass grafting (CABG). Here, to the best of our knowledge, we first detect the pulsatile flow using the laser speckle contrast imaging technique. Since the factors influencing the flow rate in the CA are complex, we developed a comprehensive model, a speckle triangle assessment (STA), to assess the characteristics of the flow: the speckle flow index (SFI), mean flow index (MFI), and pulsatility index (PI). The phantom experiment was performed and found that our customized setup possessed high dynamic range of the velocity measurement with good sensitivity. It also indicated that the pulsatile flow estimated by the speckle triangle assessment is promising to obtain a more accurate assessment of a coronary artery’s patency in the CABG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.