Amides are a class of highly stable and readily available compounds. The amide functional group constitutes a class of powerful directing/activating and protecting group for C-C bond formation. Tertiary tert-alkylamine, including 1-azaspirocycle is a key structural feature found in many bioactive natural products and pharmaceuticals. The transformation of amides into tert-alkylamines generally requires several steps. In this paper, we report the full details of the first general method for the direct transformation of tertiary lactams/amides into tert-alkylamines. The method is based on in situ activation of amide with triflic anhydride/2,6-di-tert-butyl-4-methylpyridine (DTBMP), followed by successive addition of two organometallic reagents of the same or different kinds to form two C-C bonds. Both alkyl and functionalized organometallic reagents and enolates can be used as the nucleophiles. The method displayed excellent 1,2- and good 1,3-asymmetric induction. Construction of 1-azaspirocycles from lactams required only two steps or even one-step by direct spiroannelation of lactams. The power of the method was demonstrated by a concise formal total synthesis of racemic cephalotaxine.
A one-pot reaction for the transformation of common secondary amides into amines with C-C bond formation is described. This method consists of in situ amide activation with Tf2O-partial reduction-addition of C-nucleophiles. The method is general in scope, which allows employing both hard nucleophiles (RMgX, RLi) and soft nucleophiles, as well as enolates. With the use of soft nucleophiles, the reaction proceeded with high chemoselectivity at a secondary amide in the presence of ester, cyano, nitro, and tertiary amide groups.
The enantioselective total syntheses of the potent immunosuppressant FR901483 (1) and its 8-epimer (47) have been accomplished. Our approach features the use of building block 6 as the chiron, the application of the one-pot amide reductive bis-alkylation method to construct the chiral aza-quaternary center (dr = 9:1), regio- and diastereoselective intramolecular aldol reaction to build the bridged ring, and RCM to form the 3-pyrrolin-2-one ring.
A formal enantioselective total synthesis of the potent immunosuppressant FR901483 (1) has been accomplished. Our approach features the use of chiron 6 as the starting material, the application of the one-pot amide reductive bisalkylation method to construct the chiral aza-quaternary center (dr = 9:1), regio- and diastereoselective intramolecular aldol reaction to build the bridged ring, and ring closing metathesis to form the 3-pyrrolin-2-one ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.