Driver fatigue is a significant factor in many traffic accidents. We propose a novel approach for driver fatigue detection from facial image sequences, which is based on multiscale dynamic features. First, Gabor filters are used to get a multiscale representation for image sequences. Then Local Binary Patterns are extracted from each multiscale image. To account for the temporal aspect of human fatigue, the LBP image sequence is divided into dynamic units, and a histogram of each dynamic unit is computed and concatenated as dynamic features. Finally a statistical learning algorithm is applied to extract the most discriminative features from the multiscale dynamic features and construct a strong classifier for fatigue detection. The proposed approach is validated under real-life fatigue conditions. The test data includes 600 image sequences with illumination and pose variations from 30 people's videos. Experimental results show the validity of the proposed approach, and a correct rate of 98.33% is achieved which is much better than the baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.