The addition of phosphotungstic acid (PTA) to the synthesis mixture of PdCu@FeIII–MOF-5 yields the direct encapsulation of PTA inside the MOF structure (i.e. PTA@PdCu@FeIII–MOF-5) through a facile solvothermal approach.
A transplanted stem cell’s engagement with a pathologic niche is the first step in its restoring homeostasis to that site. Inflammatory chemokines are constitutively produced in such a niche; their binding to receptors on the stem cell helps direct that cell’s “pathotropism.” Neural stem cells (NSCs), which express CXCR4, migrate to sites of CNS injury or degeneration in part because astrocytes and vasculature produce the inflammatory chemokine CXCL12. Binding of CXCL12 to CXCR4 (a G protein-coupled receptor, GPCR) triggers repair processes within the NSC. Although a tool directing NSCs to where needed has been long-sought, one would not inject this chemokine in vivo because undesirable inflammation also follows CXCL12–CXCR4 coupling. Alternatively, we chemically “mutated” CXCL12, creating a CXCR4 agonist that contained a strong pure binding motif linked to a signaling motif devoid of sequences responsible for synthetic functions. This synthetic dual-moity CXCR4 agonist not only elicited more extensive and persistent human NSC migration and distribution than did native CXCL 12, but induced no host inflammation (or other adverse effects); rather, there was predominantly reparative gene expression. When co-administered with transplanted human induced pluripotent stem cell-derived hNSCs in a mouse model of a prototypical neurodegenerative disease, the agonist enhanced migration, dissemination, and integration of donor-derived cells into the diseased cerebral cortex (including as electrophysiologically-active cortical neurons) where their secreted cross-corrective enzyme mediated a therapeutic impact unachieved by cells alone. Such a “designer” cytokine receptor-agonist peptide illustrates that treatments can be controlled and optimized by exploiting fundamental stem cell properties (e.g., “inflammo-attraction”).
Metal-organic framework (MOF)-based materials possess numerous attractive characteristics; however, the application of MOF-based photocatalysts in the area of visible-light photocatalytic H2 evolution is still in its infancy. Herein, we develop a series of novel UiO-66-NH2-based composites with embedded NiO nanoparticles via solvothermal treatment and subsequent calcination. Their characterizations demonstrate intimate lattice-level contacts between UiO-66-NH2 photocatalysts and NiO nanoparticles. By optimizing each component, even without noble metal loading, the U6N-NiO-2 sample (the weight ratio of NiO to U6N-NiO-2 is theoretically calculated to be ca. 10 wt%) with 15 mg eosin Y as a sensitizer causes an enhanced H2 generation rate of 2561.32 μmol h-1 g-1 under visible-light irradiation using TEOA as a sacrificial reagent; furthermore, its corresponding quantum efficiency is as high as 6.4% at 420 nm. The H2 evolution activity of U6N-NiO-2 is about 5 times higher than that of the UiO-66-NH2 photocatalyst (denoted as U6N) and 23 times higher than that of U6N-NiO-2 without sensitizer. It is demonstrated that the high efficiency originates from the visible-light generated electrons of eosin Y and UiO-66-NH2, the efficient separation of carriers by the cascaded band structure and more negative CB of NiO as well as the good dispersion of NiO nanoparticles on the octahedral skeleton. This study provides new insights for the design of MOF-based materials without noble metal loading for visible-light photocatalytic H2 evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.