Aims
Acute aortic dissection (AAD) is a life-threatening disease with high morbidity and mortality. Previous studies have showed that vascular smooth muscle cell (VSMC) phenotype switching modulates vascular function and AAD progression. However, whether an endogenous signaling system that protects AAD progression exists, remains unknown. Our aim is to investigate the role of Anxa1 in VSMC phenotype switching and the pathogenesis of AAD.
Methods and Results
We first assessed Anxa1 expression levels by immunohistochemical staining in control aorta and AAD tissue from mice. A strong increase of Anxa1 expression was seen in the mouse AAD tissues. In line with these findings, micro-CT scan results indicated that Anxa1 plays a role in the development of AAD in our murine model, with systemic deficiency of Anxa1 markedly progressing AAD. Conversely, administration of Anxa1 mimetic peptide, Ac2-26, rescued the AAD phenotype in Anxa1-/- mice. Transcriptomic studies revealed a novel role for Anxa1 in VSMC phenotype switching, with Anxa1 deficiency triggering the synthetic phenotype of VSMCs via down-regulation of the JunB/MYL9 pathway. The resultant VSMC synthetic phenotype rendered elevated inflammation and enhanced matrix metalloproteinases (MMPs) production, leading to augmented elastin degradation. VSMC-restricted deficiency of Anxa1 in mice phenocopied VSMC phenotype switching and the consequent exacerbation of AAD. Finally, our studies in human AAD aortic specimens recapitulated key findings in murine AAD, specifically that the decrease of Anxa1 is associated with VSMC phenotype switch, heightened inflammation, and enhanced MMP production in human aortas.
Conclusions
Our findings demonstrated that Anxa1 is a novel endogenous defender that prevents acute aortic dissection by inhibiting vascular smooth muscle cell phenotype switching, suggesting that Anxa1 signaling may be a potential target for AAD pharmacological therapy.
Translational Perspective
Our studies herein may lead to a paradigm shift for pharmacologic therapy towards acute aortic dissection. Through careful examination of the pathological changes that occur during AAD onset in experimental animal models, we demonstrated that VSMC phenotype switching plays a critical role in the development of AAD. Inhibition of VSMC phenotype switching and its attendant impacts on aortic function may be a viable approach for future treatment. Toward that end, our studies highlighted the protective benefit of Anxa1 and its mimetic peptide Ac2-26 in AAD through prevention of the switching of VSMC to a synthetic phenotype.
Introduction:Radiation-induced heart disease (RIHD) is a serious side effect of cancer treatment, including coronary artery disease, valvular cardiac dysfunction, cardiomyopathy, aortopathy, and chronic constrictive pericarditis. Herein, this case we present was diagnosed as radiation-induced constrictive pericarditis and cardiomyopathy by means of cardiac magnetic resonance (CMR) and transthoracic echocardiogram, finally confirmed by pathology after performing heart transplant operation.Conclusions:This case supports a notion that RIHD often causes multiple heart impairment and CMR is helpful to diagnose cardiomyopathy after radiation.
Background: Heart failure (HF) is often comorbid with sleep disordered breathing (SDB). This prospective study investigated the prevalence, clinical characteristics, and predictors of SDB in hospitalized HF patients. Methods: Sleep studies were performed on hospitalized HF patients from January 2015 to February 2019. SDB was categorized as no/mild SDB, obstructive sleep apnea (OSA), and central sleep apnea (CSA).Results: The study included 1069 hospitalized HF patients. The prevalence rates of OSA and CSA were 16.6% and 36.9%, respectively. Patients with OSA or CSA were more likely to be male and have a higher body mass index (BMI) and more comorbidities. Multivariate logistic regression analysis showed that male sex
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.