Background The echinococcosis is prevalent in 10 provinces /autonomous region in western and northern China. Epidemiological survey of echinococcosis in China in 2012 showed the average prevalence of four counties in Tibet Autonomous Region (TAR) is 4.23%, much higher than the average prevalence in China (0.24%). It is important to understand the transmission risks and the prevalence of echinococcosis in human and animals in TAR. Methods A stratified and proportionate sampling method was used to select samples in TAR. The selected residents were examined by B-ultrasonography diagnostic, and the faeces of dogs were tested for the canine coproantigen against Echinococcus spp . using enzyme-linked immunosorbent assay. The internal organs of slaughtered domestic animals were examined by visual examination and palpation. The awareness of the prevention and control of echinococcosis among of residents and students was investigated using questionnaire. All data were inputted using double entry in the Epi Info database, with error correction by double-entry comparison, the statistical analysis of all data was processed using SPSS 21.0, and the map was mapped using ArcGIS 10.1, the data was tested by Chi-square test and Cochran-Armitage trend test. Results A total of 80 384 people, 7564 faeces of dogs, and 2103 internal organs of slaughtered domestic animals were examined. The prevalence of echinococcosis in humans in TAR was 1.66%, the positive rate in females (1.92%) was significantly higher than that in males (1.41%), ( χ 2 = 30.31, P < 0.01), the positive rate of echinococcosis was positively associated with age ( χ 2 trend = 423.95, P < 0.01), and the occupational populations with high positive rates of echinococcosis were herdsmen (3.66%) and monks (3.48%). The average positive rate of Echinococcus coproantigen in TAR was 7.30%. The positive rate of echinococcosis in livestock for the whole region was 11.84%. The average awareness rate of echinococcosis across the region was 33.39%. Conclusions A high prevalence of echinococcosis is found across the TAR, representing a very serious concern to human health. Efforts should be made to develop an action plan for echinococcosis prevention and control as soon as possible, so as to control the endemic of echinococcosis and reduce the medical burden on the population. Electronic supplementary material The online version of this article (10.1186/s40249-019-0537-5) contains supplementary material, which is available to authorized users.
Bone defect repair at load-bearing sites is a challenging clinical problem for orthopedists. Defect reconstruction with implants is the most common treatment; however, it requires the implant to have good mechanical properties and the capacity to promote bone formation. In recent years, the piezoelectric effect, in which electrical activity can be generated due to mechanical deformation, of native bone, which promotes bone formation, has been increasingly valued. Therefore, implants with piezoelectric effects have also attracted great attention from orthopedists. In this study, we developed a bioactive composite scaffold consisting of BaTiO3, a piezoelectric ceramic material, coated on porous Ti6Al4V. This composite scaffold showed not only appropriate mechanical properties, sufficient bone and blood vessel ingrowth space, and a suitable material surface topography but also a reconstructed electromagnetic microenvironment. The osteoconductive and osteoinductive properties of the scaffold were reflected by the proliferation, migration, and osteogenic differentiation of mesenchymal stem cells. The ability of the scaffold to support vascularization was reflected by the proliferation and migration of human umbilical vein endothelial cells and their secretion of VEGF and PDGF-BB. A well-established sheep spinal fusion model was used to evaluate bony fusion in vivo. Sheep underwent implantation with different scaffolds, and X-ray, micro-computed tomography, van Gieson staining, and elemental energy-dispersive spectroscopy were used to analyze bone formation. Isolated cervical angiography and visualization analysis were used to assess angiogenesis at 4 and 8 months after transplantation. The results of cellular and animal studies showed that the piezoelectric effect could significantly reinforce osteogenesis and angiogenesis. Furthermore, we also discuss the molecular mechanism by which the piezoelectric effect promotes osteogenic differentiation and vascularization. In summary, Ti6Al4V scaffold coated with BaTiO3 is a promising composite biomaterial for repairing bone defects, especially at load-bearing sites, that may have great clinical translation potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.