In this paper, with the aid of a quality evaluation model, we study sensitivity analysis of the quality evaluation system for Baikal skullcap root and compute related sensitivity indices, hence determine the response of pharmacological effect under the model by varying chromatographic fingerprint data. This result is new and provides us with a feasible method for the quality evaluation of Traditional Chinese Herbal Medicine.
In this paper, a model for evaluating the quality of Baikal skullcap root based on the chromatographic fingerprint and pharmacological effect correlation mode was established by using multivariate polynomial fitting technique. This result is new and the accuracy of the model is tested by comparing the modeled results with the experimental data. In addition, a related piece of software was developed. This paper also provides us with a new modelling method for the quality evaluation of traditional Chinese herbal medicine.
Fault diagnosis can insure the power transformer safety and economic operation, and the data mining is the key technology of fault diagnosis for power transformer. In order to achieve the fast parallel fault diagnosis for power transformer, we need to put cloud computing technology into the smart grid. We give a parallel method of K-means based on MapReduce framework on the Hadoop distributed systems cluster to diagnose operation state of power transformer. Finally, through transformer fault diagnosis experimentations of massive DGA data, the results indicate closely linear speedup with an increasing number of node computers.
Correctly modeling software requirements is one of the grand challenges of current ECU (Electronic control Unit) development. To ensure the correctness of the requirements, formal modeling techniques are usually used because they allow analyzers to simulate, verify and even conduct performance analysis in the requirement level. In this paper, we propose a requirements modeling framework, based on the philosophy of separation of concerns and the formal modeling techniques. The main contributions of this paper are two-fold: (1) We divide a complicated automotive software as several concerns, each of which is modeled by different formal techniques, thus the descriptive complexity of the requirements is decreased, and accordingly the models’ understandability is enhanced; (2) The adoption of formal techniques allows us to simulate the execution of the software and calculate the performance in the early stage of development, therefore the correctness of requirements can be improved.
Micro-channel Plate (MCP) with Ion Barrier Film(IBF) is one of the main technical indicators that restrict the performance of the third generations of Low Light Level Image Intensifier(LLLII). IBF with inferior quality can be a direct impact on the performance of the third generations of LLLII or even makes it not work, and it’s very unfavorable in the tube mass production and promotion. In response to this urgent requirement, in order to improve the quality and preparation of the finished product of the Al2O3 on the input side of MCP prepared by magnetron sputtering, the paper carries out the process optimization of magnetron sputtering used for image intensifier. By simulation of Ar ion bombarding Al2O3 target, while under the guidance of the working principles of the magnetron sputtering and thin film growth theory, we change the working pressure、 sputtering power、 argon flow and other process parameters by using magnetron sputtering machine developed in China, to change the coating deposition rate of Al2O3, and to increase the lateral migration of the film-forming process of Al2O3. Finally we prepare a uniform、 continuous and compact Al2O3 Ion Barrier Film. At last the optimal technique is obtained: Sputtering pressure is 2.6×10-1Pa, Ar2 flux is 90sccm, sputtering power is 170W, and the thickness of film is 80Å. We test the performance of MCP with optimized films by using the MCP performance testing devices, contrasting with pre-fabricated thin-film quality, and the results show that the average gain decline is dropped, the dead volt is lower, and the quality of the films prepared by this process is significantly better, yield and view pass rate is as high as 90%, meeting the dual demands of high electronic transmittance and high ion blocking rate of IBF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.