A thorough understanding of the intermolecular configurations of van der Waals complexes is a great challenge due to their weak interactions, floppiness and anharmonic nature. Although high-resolution microwave or infrared spectroscopy provides one of the most direct and precise pieces of experimental evidence, the origin and key role in determining such intermolecular configurations of a van der Waals system strongly depend on its highly accurate potential energy surface (PES) and a detailed analysis of its ro-vibrational wavefunctions. Here, a new five-dimensional potential energy surface for the van der Waals complex of CO-N which explicitly incorporates the dependence on the stretch coordinate of the CO monomer is generated using the explicitly correlated couple cluster (CCSD(T)-F12) method in conjunction with a large basis set. Analytic four-dimensional PESs are obtained by the least-squares fitting of vibrationally averaged interaction energies for v = 0 and v = 1 to the Morse/Long-Range potential mode (V). These fits to 7966 points have root-mean-square deviations (RMSD) of 0.131 cm and 0.129 cm for v = 0 and v = 1, respectively, with only 315 parameters. Energy decomposition analysis is carried out, and it reveals that the dominant factor in controlling intermolecular configurations is quadrupole-quadrupole electrostatic interactions. Moreover, the rovibrational levels and wave functions are obtained for the first time. The predicted infrared transitions and intensities for the ortho-N-CO complex as well as the calculated energy levels for para-N-CO are in good agreement with the available experimental data with RMSD discrepancies smaller than 0.068 cm. The calculated infrared band origin shift associated with the fundamental band frequency of CO is -0.721 cm for ortho-N-CO which is in excellent agreement with the experimental value of -0.739 cm. The agreement with experimental values validates the high quality of the PESs and enhances our confidence to explain the observed mystery lines around 2163 cm.
The origin and strength of intra- and inter-molecular vibrational coupling is difficult to probe by direct experimental observations. However, explicitly including or not including some specific intramolecular vibrational modes to study intermolecular interaction provides a precise theoretical way to examine the effects of anharmonic coupling between modes. In this work, a full-dimension intra- and inter-molecular ab initio potential energy surface (PES) for H2O-Ar, which explicitly incorporates interdependence on the intramolecular (Q1, Q2, Q3) normal-mode coordinates of the H2O monomer, has been calculated. In addition, four analytic vibrational-quantum-state-specific PESs are obtained by least-squares fitting vibrationally averaged interaction energies for the (v1, v2, v3) = (0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0) states of H2O to the three-dimensional Morse/long-range potential function. Each vibrationally averaged PES fitted to 442 points has root-mean-square (rms) deviation smaller than 0.15 cm(-1), and required only 58 parameters. With the 3D PESs of H2O-Ar dimer system, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. This showed that the resulting vibrationally averaged PESs provide good representations of the experimental infrared data, with rms discrepancies smaller than 0.02 cm(-1) for all three rotational branches of the asymmetric stretch fundamental transitions. The infrared band origin shifts associated with three fundamental bands of H2O in H2O-Ar complex are predicted for the first time and are found to be in good agreement with the (extrapolated) experimental values. Upon introduction of additional intramolecular degrees of freedom into the intermolecular potential energy surface, there is clear spectroscopic evidence of intra- and intermolecular vibrational couplings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.