Tapetal programmed cell death (PCD) is a prerequisite for pollen grain development in angiosperms, and cysteine proteases are the most ubiquitous hydrolases involved in plant PCD. We identified a papain-like cysteine protease, CEP1, which is involved in tapetal PCD and pollen development in Arabidopsis thaliana. CEP1 is expressed specifically in the tapetum from stages 5 to 11 of anther development. The CEP1 protein first appears as a proenzyme in precursor protease vesicles and is then transported to the vacuole and transformed into the mature enzyme before rupture of the vacuole. cep1 mutants exhibited aborted tapetal PCD and decreased pollen fertility with abnormal pollen exine. A transcriptomic analysis revealed that 872 genes showed significantly altered expression in the cep1 mutants, and most of them are important for tapetal cell wall organization, tapetal secretory structure formation, and pollen development. CEP1 overexpression caused premature tapetal PCD and pollen infertility. ELISA and quantitative RT-PCR analyses confirmed that the CEP1 expression level showed a strong relationship to the degree of tapetal PCD and pollen fertility. Our results reveal that CEP1 is a crucial executor during tapetal PCD and that proper CEP1 expression is necessary for timely degeneration of tapetal cells and functional pollen formation.
Proteinases play a critical role in developmental homeostasis and in response to environ-mental stimuli. Our present research reports that a new cysteine protease, NtCP56, is involved in the development of pollen grains in Nicotiana tabacum L. The NtCP56 gene, which encodes a protein of 361 amino acid residues with a calculated molecular mass of 40 kDa, is strongly expressed in anthers. The recombinant NtCP56 showed a high activity towards casein. Kinetic analysis revealed a Km of 2.20 mg ml−1 and Vmax of 11.07 μg ml−1 min−1. The recombinant NtCP56 retained more than 50% of its maximum enzymatic activity from 20 °C to 60 °C with an optimum Tm range of 30–50 °C. The enzyme had a maximum activity at approximately pH 6.5. Suppression of the NtCP56 gene in anti-sense transgenic tobaccos resulted in the sterility of pollen grains. Our data indicated that, as a cysteine protease, NtCP56 might play an important role in pollen development.
Propionate is one of the most important intermediates of anaerobic fermentation. Its oxidation performed by syntrophic propionate-oxidizing bacteria coupled with hydrogenotrophic methanogens is considered to be a rate-limiting step for methane production. However, the current understanding of SPOB is limited due to the difficulty of pure culture isolation. In the present study, two anaerobic chemostats fed with propionate as the sole carbon source were operated at different dilution rates (0.05 d−1 and 0.15 d−1). The propionate- and acetate-oxidizing bacteria in the two methanogenic chemostats were investigated combining DNA-stable isotope probing (DNA-SIP) and 16S rRNA gene high-throughput sequencing. The results of DNA-SIP with 13C-propionate/acetate suggested that, Smithella, Syntrophobacter, Cryptanaerobacter, and unclassified Rhodospirillaceae may be putative propionate-oxidizing bacteria; unclassified Spirochaetaceae, unclassified Synergistaceae, unclassified Elusimicrobia, Mesotoga, and Gracilibacter may contribute to acetate oxidation; unclassified Syntrophaceae and Syntrophomonas may be butyrate oxidizers. By DNA-SIP, unclassified OTUs with 16S rRNA gene abundance higher than 62% of total Bacteria in the PL chemostat and 38% in the PH chemostat were revealed to be related to the degradation of propionate. These results suggest that a variety of uncultured bacteria contribute to propionate degradation during anaerobic digestion. The functions and metabolic characteristics of these bacteria require further investigation.
A strictly anaerobic, thermophilic, Gram-stain-negative bacterium, named as strain S15T, was isolated from oily sludge of Shengli oilfield in PR China. Cells of strain S15T were straight or slightly curved rods with 0.4–0.8 µm width × 1.4–3 µm length and occurred mostly in pairs or short chains. Endospore-formation was not observed. The strain grew optimally at 55 °C (range from 30–65 °C), pH 6.5 (pH 6.0–8.5) and 0–30 g l−1 NaCl (optimum with 10 g l−1 NaCl). Yeast extract was an essential growth factor for strain S15T. The major cellular fatty acid was iso-C15 : 0 (58.2 %), and the main polar lipids were amino phospholipid (APL), glycolipids (GLs) and phosphatidylethanolamine (PE). The G+C content of DNA of strain S15T was 52.2 mol%. Strain S15T shared 89.8 % 16S rRNA gene similarity with the most related organism
Acetomicrobium hydrogeniformans
DSM 22491T in the phylum
Synergistetes
. The paired genomic average amino acid identity (AAI) and percentage of conserved proteins (POCP) values showed relatedness of less than 58.0 and 39.7 % with type strains of the species in the phylum
Synergistetes
. On the basis of phenotypic, phylogenetic and phylogenomic evidences, strain S15T constitutes a novel species in a novel genus, for the name Thermosynergistes pyruvativorans gen. nov., sp. nov. is proposed. The type strain is S15T (=CCAM 583T=JCM 33159T). Thermosynergistaceae fam. nov. is also proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.