Summary
Mossy cells (MCs) represent a major population of excitatory neurons in the adult dentate gyrus, a brain region where new neurons are generated from radial neural stem cells (rNSCs) throughout life. Little is known about the role of MCs in regulating rNSCs. Here we demonstrate that MC commissural projections structurally and functionally interact with rNSCs through both direct glutamatergic MC-rNSC pathway and indirect GABAergic MC-local interneuron-rNSC pathway. Specifically, moderate MC activation increases rNSC quiescence through dominant indirect pathway; while high MC activation increases rNSC activation through dominant direct pathway. In contrast, MC inhibition or ablation leads to a transient increase of rNSC activation, but rNSC depletion only occurs after chronic ablation of MCs. Together, our study identifies MCs as a critical stem cell niche component that dynamically controls adult NSC quiescence and maintenance under various MC activity states through a balance of direct glutamatergic and indirect GABAergic signaling onto rNSCs.
Regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is a key mechanism
for synaptic plasticity. In the brain, AMPARs assemble with a number of auxiliary
subunits, including TARPs, CNIHs and CKAMP44, which are important for AMPAR forward
trafficking to synapses. Here we report that the membrane protein GSG1L negatively
regulates AMPAR-mediated synaptic transmission. Overexpression of GSG1L strongly
suppresses, and GSG1L knockout (KO) enhances, AMPAR-mediated synaptic transmission.
GSG1L-dependent regulation of AMPAR synaptic transmission relies on the first
extracellular loop domain and its carboxyl-terminus. GSG1L also speeds up AMPAR
deactivation and desensitization in hippocampal CA1 neurons, in contrast to the
effects of TARPs and CNIHs. Furthermore, GSG1L association with AMPARs inhibits
CNIH2-induced slowing of the receptors in heterologous cells. Finally, GSG1L KO rats
have deficits in LTP and show behavioural abnormalities in object recognition tests.
These data demonstrate that GSG1L represents a new class of auxiliary subunit with
distinct functional properties for AMPARs.
Summary
In the brain, many types of interneurons make functionally diverse inhibitory synapses onto principal neurons. While numerous molecules have been identified to function in inhibitory synapse development, it remains unknown whether there is a unifying mechanism for development of diverse inhibitory synapses. Here we report a general molecular mechanism underlying hippocampal inhibitory synapse development. In developing neurons, the establishment of GABAergic transmission depends on Neuroligin2 (NL2), a synaptic cell adhesion molecule (CAM). During maturation, inhibitory synapse development requires both NL2 and Slitrk3 (ST3), another CAM. Importantly, NL2 and ST3 interact with nanomolar affinity through their extracellular domains to synergistically promote synapse development. Selective perturbation of the NL2-ST3 interaction impairs inhibitory synapse development with consequent disruptions in hippocampal network activity and increased seizure susceptibility. Our findings reveal how unique postsynaptic CAMs work in concert to control synaptogenesis and establish a general framework for GABAergic synapse development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.