Malignant pleural mesothelioma (MPM) is an aggressive malignancy linked to asbestos exposure and highly resistant to chemotherapy, potentially due to upregulated expression of the pro-survival proteins, BCL2/BCL-XL/MCL-1. Using clinically-relevant models of MPM we show that patient-derived primary MPM cell lines and ex-vivo 3D tumour explants are highly resistant to apoptosis induced by the BCL2/BCL-XL inhibitor, ABT-737. Importantly, we discover that 2-deoxyglucose (2DG), a glycolytic inhibitor, can sensitize MPM cells to ABT-737 and show this correlates with loss of the pro-survival protein, MCL-1. siRNA knockdown of MCL-1 (MCL-1 KD) combined with ABT-737 induced BAX/BAK-dependent, but BIM/PUMA-independent apoptosis, mimicking 2DG/ABT-737 treatment. MCL-1 KD/ABT-737 induced mitochondrial cytochrome c release and caspase-independent inhibition of mitochondrial respiration. Moreover, we observed a hitherto unreported caspase-dependent cleavage of glycolytic enzymes and subsequent inhibition of glycolysis. 2DG inhibited ERK/STAT3 activity, decreased MCL-1 mRNA and protein levels, with concurrent activation of AKT, which limited loss of MCL-1 protein. However, co-treatment with a specific AKT inhibitor, AZD5363, and 2DG/ABT-737 potently induced cell death and inhibited clonogenic cell survival, while in MPM 3D tumour explants MCL-1 protein expression decreased significantly following 2DG or 2DG/AZD5363 treatment. Notably, a similar synergy was observed in MPM cell lines and MPM 3D tumour explants using ABT-737 in combination with the recently developed MCL-1 inhibitor, S63845. Importantly, our study provides a mechanistic explanation for the chemoresistance of MPM and highlights how this can be overcome by a combination of metabolic reprogramming and/or simultaneous targeting of MCL-1 and BCL-2/BCL-XL using BH3-mimetics.
Dysregulated mitochondrial fusion and fission has been implicated in the pathogenesis of numerous diseases. We have identified a novel function of the p53 family protein TAp73 in regulating mitochondrial dynamics. TAp73 regulates the expression of Optic atrophy 1, a protein responsible for controlling mitochondrial fusion, cristae biogenesis and electron transport chain function. Disruption of this axis results in a fragmented mitochondrial network and an impaired capacity for energy production via oxidative phosphorylation. Owing to the role of OPA1 in modulating cytochrome c release, TAp73-/-cells also display an increased sensitivity to apoptotic cell death, e.g., via BH3-mimetics. We also show that the TAp73/OPA1 axis has functional relevance in the upper airway, where TAp73 expression is essential for multiciliated cell differentiation and function. Consistently, ciliated epithelial cells of Trp73-/-(global p73 KO) mice display decreased expression of OPA1 and perturbations of the mitochondrial network, which may drive multiciliated cell loss. In support of this, Trp73 and OPA1 expression is decreased in COPD patients, a disease characterised by alterations in mitochondrial dynamics. We therefore highlight a potential mechanism involving the loss of p73 in COPD pathogenesis. This work also adds to the growing body of evidence for growth-promoting roles of TAp73 isoforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.