Many innate immune mechanisms are conserved throughout the animal kingdom. Manduca sexta, a widely used model for insect biochemical research, employs these mechanisms to defend against invading pathogens and parasites. We have isolated from M. sexta hemolymph a group of proteins (hemolin, peptidoglycan recognition proteins, beta-1,3-glucan recognition proteins, and C-type lectins), which serve as a surveillance mechanism by binding to microbial surface molecules (e.g. peptidoglycan, lipopolysaccharide, lipoteichoic acid, and beta-1,3-glucan). The binding triggers diverse responses such as phagocytosis, nodule formation, encapsulation, melanization, and synthesis of anti-microbial peptides/proteins. Some of these responses are mediated and coordinated by serine proteinase cascades, analogous to the complement system in mammals. Our current research is focused on the proteolytic activation of prophenoloxidase (proPO)--a reaction implicated in melanotic encapsulation, wound healing, and protein cross-linking. We have isolated three proPO-activating proteinases, each of which requires serine proteinase homologs as a cofactor for generating active phenoloxidase. The proteinases and proteinase-like molecules, containing one to two clip domains at their amino-terminus, are acute-phase proteins induced upon an immune challenge. Inhibitory regulation of the proteinases by serpins and association of the proteinase homologs with a bacteria-binding lectin are important for ensuring a localized defense response. Additional serine proteinases expressed in M. sexta hemocytes and fat body have been discovered. Future research efforts will be aimed at elucidating the proteinase cascade for proPO activation and investigating the roles of proteinases in other immune responses such as processing of plasmatocyte-spreading peptide.
Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20–50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.
A lipopolysaccharide-specific lectin, immulectin-2, was isolated from plasma of the tobacco hornworm, Manduca sexta. Immulectin-2 has specificity for xylose, glucose, lipopolysaccharide, and mannan. A cDNA clone encoding immulectin-2 was isolated from an Escherichia coli-induced M. sexta larval fat body cDNA library. The cDNA is 1253 base pairs long, with an open reading frame of 981 base pairs, encoding a 327-residue polypeptide. Immulectin-2 is a member of the C-type lectin superfamily. It consists of two carbohydrate recognition domains, which is similar to the organization of M. sexta immulectin-1. Immulectin-2 was present at a constitutively low level in plasma of control larvae and increased 3-4-fold after injection of Gram-negative bacteria or lipopolysaccharide. Immulectin-2 mRNA was detected in fat body of control larvae, and its level increased dramatically after injection of E. coli. The concentration of immulectin-2 in plasma did not change significantly after injection of Gram-positive bacteria or yeast, even though its mRNA level was increased by these treatments. Compared with immulectin-1, immulectin-2 has a more restricted specificity for binding to Gram-negative bacteria. Immulectin-2 at low physiological concentrations agglutinated E. coli in a calciumdependent manner. It also bound to immobilized lipopolysaccharide from E. coli. Binding of immulectin-2 to lipopolysaccharide stimulated phenol oxidase activation in plasma. The properties of immulectin-2 are consistent with its function as a pattern recognition receptor for detection and defense against Gram-negative bacterial infection in M. sexta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.