Nonrandom allelic loss on chromosome 3p is a common event in nasopharyngeal carcinoma (NPC) with the implication that certain tumor suppressor gene(s) in this region are involved in the pathogenesis of these tumors. The BLU gene, located at 3p21.3, has recently been identified as a candidate tumor suppressor gene due to the occurrence of missense mutations and loss of its expression in lung cancer. To investigate the involvement of BLU gene in NPC, we examined both genetic and epigenetic changes of BLU in NPC primary tumors and cell lines. No pathogenic mutations were detected in the entire coding region of this gene in 45 primary NPC tumors and 5 NPC cell lines. While BLU was expressed in 100% (15 of 15) of noncancerous nasopharyngeal epithelia, its transcripts were missing in all 5 NPC cell lines, and absent or reduced mRNA levels were observed in 78% (28 of 36) of the primary tumors. In the NPC cell lines, loss of BLU expression correlated with hypermethylation of the CpG island promoter sequence, and expression was restored after treatment with 5-aza-2-deoxycytidine. Methylation specific PCR analysis revealed that the BLU promoter was highly methylated in 74% (17 of 23) of primary tumors in which BLU was downregulated, whereas only 2 of 9 non-neoplastic nasopharyngeal epithelia exhibited hypermethylation in the BLU promoter region. The high incidence of BLU alterations suggests that it may be one of the critical tumor suppressor genes on chromosome 3p21.3 involved in the development of NPC.
BackgroundEctopic angiogenesis within the intima and media is considered to be a hallmark of advanced vulnerable atherosclerotic lesions. Some studies have shown that specific matrix metalloproteinases (MMPs) might play different roles in angiogenesis. Therefore, we investigated the predominant effects of specific MMPs in intraplaque angiogenesis and plaque instability in a rabbit model of atherosclerosis.Methods and ResultsNew Zealand rabbits underwent balloon injury of the abdominal artery and ingestion of a high-cholesterol (1%) diet to establish an atherosclerotic animal model. At weeks 4, 6, 8, 10, and 12 after balloon injury, five rabbits were euthanized and the abdominal aorta was harvested. Blood lipid analysis, intravascular ultrasound imaging, pathologic and immunohistochemical expression studies, and western blotting were performed. From weeks 4 to 12, the expression of MMP-1, -2, -3, and -9 and vascular endothelial growth factor A (VEGF-A) increased with atherosclerotic plaque development in the abdominal aorta, while the expression of MMP-14 substantially decreased. The vulnerability index (VI) gradually increased over time. Intraplaque neovessels appeared at week 8. The microvessel density (MVD) was greater at week 12 than at week 8. The VI, MVD, and VEGF-A level were positively correlated with the MMP-1, -2,-3, and -9 levels within plaques. Negative correlations were noted between the MMP-14 level and the VI, MVD, and VEGF-A level.ConclusionUpregulation of MMP-1, -2, -3, and -9 and downregulation of MMP-14 may contribute to intraplaque angiogenesis and plaque instability at the advanced stage of atherosclerosis in rabbits.
Increased immature neovessels contribute to plaque growth and instability. Here, we investigated a method to establish functional and stable neovessel networks to increase plaque stability. Rabbits underwent aortic balloon injury and were divided into six groups: sham, vector and lentiviral transfection with vascular endothelial growth factor‐A (VEGF)‐A, fibroblast growth factor (FGF)‐2, platelet‐derived growth factor (PDGF)‐BB and FGF‐2 + PDGF‐BB. Lentivirus was percutaneously injected into the media‐adventitia of the abdominal aorta by intravascular ultrasound guidance, and plaque‐rupture rate, plaque‐vulnerability index and plaque neovessel density at the injection site were evaluated. Confocal microscopy, Prussian Blue assay, Evans Blue, immunofluorescence and transmission electron microscopy were used to assess neovessel function and pericyte coverage. To evaluate the effect of FGF‐2/PDGF‐BB on pericyte migration, we used the mesenchymal progenitor cell line 10T1/2 as an in vitro model. VEGF‐A‐ and FGF‐2‐overexpression increased the number of immature neovessels, which caused intraplaque haemorrhage and inflammatory cell infiltration, eventually resulting in the plaque vulnerability; however, FGF‐2/PDGF‐BB induced mature and functional neovessels, through increased neovessel pericyte coverage. Additionally, in vitro analysis of 10T1/2 cells revealed that FGF‐2/PDGF‐BB induced epsin‐2 expression and enhanced the VEGF receptor‐2 degradation, which negatively regulated pericyte function consistent with the in vivo data. These results showed that the combination of FGF‐2 and PDGF‐BB promoted the function and maturation of plaque neovessels, thereby representing a novel potential treatment strategy for vulnerable plaques.
The Epstein-Barr virus (EBV) BamHI A rightward transcripts (BARTs) were originally identified in C15 xenograft of nasopharyngeal carcinoma (NPC) and easily detected in a wide variety of EBV latent infection and EBV-associated tumors. It had been reported that p31 cosmid containing BARTs immortalized monkey epithelial cells, but which particular gene among BARTs family participates in the transformation procedure remains to be identified. RPMS1 is the only full-length cDNA confirmed so far and one of the most abundant spliced forms in BARTs family. To investigate the involvement of RPMS1 gene in NPC, we examined the expression of RPMS1 transcripts in NPC biopsies from Guangdong and its oncogenic potential. Our results revealed that RPMS1 mRNA preferentially expressed in primary NPC to non-carcinoma tissue of nasopharynx and peripheral blood lymphocytes (PBLs) of NPC patients. Furthermore, by introducing RPMS1 ORF into HEK293 cells, these transfectants enhanced the anchorage-independent growth and produced tumors in nude mice. These data imply that RPMS1 gene might play an important role in the development of NPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.