Two-dimensional (2D) magnetic materials with nontrivial topological states have recently drawn considerable attention. Among them, 2D metal-organic frameworks (MOFs) are standing out due to their advantages such as the easy synthesis in practice and less sensitivity to oxidation that are distinctly different from inorganic materials. By means of density-functional theory calculations, we systematically investigate the electronic and topological properties of a class of 2D MOFs X(C21H15N3) (X = transition metal element from 3 d to 5 d). Excitingly, we find that X(C21H15N3) (X = Ti, Zr, Ag, Au) are Chern insulators with sizable band gaps (∼7.1 meV). By studying a four-band effective model, it is revealed that the Chern insulator phase in X(C21H15N3) (X = Ti, Zr, Ag, Au) is caused cooperatively by the band inversion of the p orbitals of the C21H15N3 molecule and the intrinsic ferromagnetism of X(C21H15N3). Additionally, Mn(C21H15N3) is a Dirac half-metal ferromagnet with a high Curie temperature up to 156 K. Our work demonstrates that 2D MOFs X(C21H15N3) are good platforms for realizing the quantum anomalous Hall effect and designing spintronic devices based on half-metals with high-speed and long-distance spin transport.
Tuning the Gilbert damping of ferromagnetic (FM) metals via a nonvolatile way is of importance to exploit and design next-generation novel spintronic devices. Through systematical first-principles calculations, we study the magnetic properties of the van der Waals heterostructure of two-dimensional FM metal CrTe2 and ferroelectric (FE) In2Te3 monolayers. The ferromagnetism of CrTe2 is maintained in CrTe2/In2Te3 and its magnetic easy axis can be switched from in-plane to out-of-plane by reversing the FE polarization of In2Te3. Excitingly, we find that the Gilbert damping of CrTe2 is tunable when the FE polarization of In2Te3 is reversed from upward to downward. By analyzing the k-dependent contributions to the Gilbert damping, we unravel that such tunability results from the changed intersections between the bands of CrTe2 and Fermi level on the reversal of the FE polarizations of In2Te3 in CrTe2/In2Te3. Our work provides an appealing way to electrically tailor Gilbert dampings of two-dimensional FM metals by contacting them with ferroelectrics.
Recently, there has been a rapidly growing interest in two-dimensional (2D) transition metal chalcogenide monolayers (MLs) due to their unique magnetic and electronic properties. By using an evolutionary algorithm and first-principles calculations, we report the discovery of a previously unexplored, chemically, energetically, and thermodynamically stable 2D antiferromagnetic (AFM) CrSe ML with a Néel temperature higher than room temperature. Remarkably, we predict an electric field-controllable metal–insulator transition in a van der Waals heterostructure comprised of CrSe ML and ferroelectric Sc2CO2. This tunable transition in the CrSe/Sc2CO2 heterostructure is attributed to the change in the band alignment between CrSe and Sc2CO2 caused by the ferroelectric polarization reversal in Sc2CO2. Our findings suggest that 2D AFM CrSe ML has important potential applications in AFM spintronics, particularly in the gate voltage conducting channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.