This paper presents the research of several key technologies during the implementation of cold-rolling aluminum surface defect detection system, including the difficulty of achieving these key technologies and the improvement of image processing algorithm. Through the installation and commissioning on actual production line, summarize and analyze the requirements of the hardware and software design for highly reflective aluminum plate, to achieve the control of product quality at present.
This paper presents an on-line surface defects detection system based on machine vision, which has high speed architecture and can perform high accurate detection for cold-rolled aluminum plate. The system consists of high speed camera and industrial personal computer (IPC) array which connected through Gigabit Ethernet, achieved seamless detection by redundant control. In order to acquire high processing speed, single IPC as processor receives from and deals with only one or two cameras' image. Experimental results show that the system with high accurate detection capability can satisfy the requirement of real time detection and find out the defects on the production line effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.