Eye health has become a global health concern and attracted broad attention. Over the years, researchers have proposed many state‐of‐the‐art convolutional neural networks (CNNs) to assist ophthalmologists in diagnosing ocular diseases efficiently and precisely. However, most existing methods were dedicated to constructing sophisticated CNNs, inevitably ignoring the trade‐off between performance and model complexity. To alleviate this paradox, this paper proposes a lightweight yet efficient network architecture, mixed‐decomposed convolutional network (MDNet), to recognise ocular diseases. In MDNet, we introduce a novel mixed‐decomposed depthwise convolution method, which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low‐resolution and high‐resolution patterns by using fewer computations and fewer parameters. We conduct extensive experiments on the clinical anterior segment optical coherence tomography (AS‐OCT), LAG, University of California San Diego, and CIFAR‐100 datasets. The results show our MDNet achieves a better trade‐off between the performance and model complexity than efficient CNNs including MobileNets and MixNets. Specifically, our MDNet outperforms MobileNets by 2.5% of accuracy by using 22% fewer parameters and 30% fewer computations on the AS‐OCT dataset.
For generating a more reasonable initial layout configuration, a three-dimensional topology optimization methodology of the steel-concrete composite structure is presented. Following Solid Isotropic Material with Penalization (SIMP) approach, an artificial material model with penalization for elastic constants is assumed and elemental density variables are used for describing the structural layout. The considered problem is thus formulated as to find the optimal material density distribution that minimizes the material volume under specified displacement constraints. By using the adjoint variable method for the sensitivity analysis, the optimization problem is efficiently solved by the gradient-based optimization algorithm. Numerical result shows that the proposed topology approach presented a novel structural topology of the simply-supported steel-concrete composite beam.
Remote-vision-based image processing plays a vital role in the safety helmet and harness monitoring of construction sites, in which computer-vision-based automatic safety helmet and harness monitoring systems have attracted significant attention for practical applications. However, many problems have not been well solved in existing computer-vision-based systems, such as the shortage of safety helmet and harness monitoring datasets and the low accuracy of the detection algorithms. To address these issues, an attribute-knowledge-modeling-based safety helmet and harness monitoring system is constructed in this paper, which elegantly transforms safety state recognition into images’ semantic attribute recognition. Specifically, a novel transformer-based end-to-end network with a self-attention mechanism is proposed to improve attribute recognition performance by making full use of the correlations between image features and semantic attributes, based on which a security recognition system is constructed by integrating detection, tracking, and attribute recognition. Experimental results for safety helmet and harness detection demonstrate that the accuracy and robustness of the proposed transformer-based attribute recognition algorithm obviously outperforms the state-of-the-art algorithms, and the presented system is robust to challenges such as pose variation, occlusion, and a cluttered background.
Nuclear cataract (NC) is a priority ocular disease of blindness and vision impairment globally. Early intervention and cataract surgery can improve the vision and life quality of NC patients. Anterior segment coherence tomography (AS-OCT) imaging is a non-invasive way to capture the NC opacity objectively and quantitatively. Recent clinical research has shown that there exists a strong opacity correlation relationship between NC severity levels and the mean density on AS-OCT images. In this paper, we present an effective NC classification framework on AS-OCT images, based on feature extraction and feature importance analysis. Motivated by previous clinical knowledge, our method extracts the clinical global-local features, and then applies Pearson's correlation coefficient and recursive feature elimination methods to analyze the feature importance. Finally, an ensemble logistic regression is employed to distinguish NC, which considers different optimization methods' characteristics. A dataset with 11,442 AS-OCT images is collected to evaluate the method. The results show that the proposed method achieves 86.96% accuracy and 88.70% macro-sensitivity, respectively. The performance comparison analysis also demonstrates that the global-local feature extraction method improves about 2% accuracy than the single region-based feature extraction method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.