Arthrobotrys is the most complex genus of Orbiliaceae nematode-trapping fungi. Its members are widely distributed in various habitats worldwide due to their unique nematode-trapping survival strategies. During a survey of nematophagous fungi in Yunnan Province, China, twelve taxa were isolated from terrestrial soil and freshwater sediment habitats and were identified as six new species in Arthrobotrys based on evidence from morphological and multigene (ITS, TEF, and RPB2) phylogenetic analyses. These new species i.e., Arthrobotrys eryuanensis, A. jinpingensis, A. lanpingensis, A. luquanensis, A. shuifuensis, and A. zhaoyangensis are named in recognition of their places of origin. Morphological descriptions, illustrations, taxonomic notes, and a multilocus phylogenetic analysis are provided for all new taxa. In addition, a key to known species in Arthrobotrys is provided, and the inadequacies in the taxonomic study of nematode-trapping fungi are also discussed.
Ecosystems in high-altitude regions are more sensitive and respond more rapidly than other ecosystems to global climate warming. The Qinghai-Tibet Plateau (QTP) of China is an ecologically fragile zone that is sensitive to global climate warming. It is of great importance to study the changes in aboveground biomass and species diversity of alpine meadows on the QTP under predicted future climate warming. In this study, we selected an alpine meadow on the QTP as the study object and used infrared radiators as the warming device for a simulation experiment over eight years (2011-2018). We then analyzed the dynamic changes in aboveground biomass and species diversity of the alpine meadow at different time scales, including an early stage of warming (2011-2013) and a late stage of warming (2016-2018), in order to explore the response of alpine meadows to short-term (three years) and long-term warming (eight years). The results showed that the short-term warming increased air temperature by 0.31°C and decreased relative humidity by 2.54%, resulting in the air being warmer and drier. The long-term warming increased air temperature and relative humidity by 0.19°C and 1.47%, respectively, and the air tended to be warmer and wetter. The short-term warming increased soil temperature by 2.44°C and decreased soil moisture by 12.47%, whereas the long-term warming increased soil temperature by 1.76°C and decreased soil moisture by 9.90%. This caused the shallow soil layer to become warmer and drier under both short-term and long-term warming. Furthermore, the degree of soil drought was alleviated with increased warming duration. Under the long-term warming, the importance value and aboveground biomass of plants in different families changed. The importance values of grasses and sedges decreased by 47.56% and 3.67%, respectively, while the importance value of weeds increased by 1.37%. Aboveground biomass of grasses decreased by 36.55%, while those of sedges and weeds increased by 8.09% and 15.24%, respectively. The increase in temperature had a non-significant effect on species diversity. The species diversity indices increased at the early stage of warming and decreased at the late stage of warming, but none of them reached significant levels (P>0.05). Species diversity had no significant correlation with soil temperature and soil moisture under both short-term and long-term warming. Soil temperature and aboveground biomass were positively correlated in the control plots (P=0.014), but negatively correlated under the long-term warming (P=0.013). Therefore, eight years of warming aggravated drought in the shallow soil layer, which is beneficial for the growth of weeds but not for the growth of grasses. Warming changed the structure of alpine meadow communities and had a certain impact on the community species diversity. Our studies have great significance for the protection and effective utilization of alpine vegetation, as well as for the prevention of grassland degradation or desertification in high-altitude regions.
Researchers frequently discuss spatial distribution patterns of species diversity and biomass together with their correlations along geographical gradients. Typical subalpine meadows occur widely on the east of the Loess Plateau, China; here, we selected nine mountains belonging to four mountain systems from north to south on the east of the plateau. We analyzed five latitudinal and longitudinal gradients together with six elevational gradients to study the spatial distribution patterns of species diversity (including α , β , and γ diversity) and biomass plus with their relationships at various scales. Results showed that (1) for diversity, α -Diversity manifested unimodal variation patterns in horizontal spaces, peaking at high latitude and low longitude. However, α -diversity was not sensitive to elevation in vertical spaces and tended to decrease with increasing elevation. With increased latitude, longitude, and elevation, β -Diversity diminished; meanwhile, the rate of species turnover decreased and the similarity of community composition enlarged. γ -Diversity demonstrated quadratic function changes that were initially incremental and then decreased with increasing longitude, elevation, and latitude from 37.5° to 40°. In general, β- diversity had positive correlation with γ -diversity and negative correlation with α- diversity, which conformed to the function of β = γ / α . (2) For biomass, changes of aboveground biomass (AB) were more obvious along latitudinal gradients, whereas variations of belowground biomass (BB) had smaller differences along longitudinal and latitudinal gradients. More biomass was allocated to BB toward the north and east, whereas root-to-shoot ratio (R/S) was more evident at greater latitude than greater longitude. With increased elevation, more biomass was also allocated to BB, and the relationship of biomass to elevation was closer in AB. In short, the relation of biomass allocation tended to belowground plant parts with different geographical scales. (3) Species diversity had the strongest positive influence on AB. The Patrick and Shannon indices had correlations of power functions with AB and R/S, respectively, indicating that an allometric model could be used to model relationships between species diversity and biomass. In conclusion, the unique geomorphological structures with a series of basins between mountain systems on the east of the Loess Plateau, meant that subalpine meadows were mostly distributed along latitudinal directions, so the spatial distribution of species diversity and biomass was more evident along latitudinal gradients, and thus the response of aboveground biomass was more sensitive to variations of spatial gradients and species diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.