Hepatitis B virus (HBV) X protein, HBx, interacts with anti-apoptotic Bcl-2 and Bcl-xL proteins through its BH3-like motif to promote HBV replication and cytotoxicity. Here we report the crystal structure of HBx BH3-like motif in complex with Bcl-xL where the BH3-like motif adopts a short α-helix to snuggle into a hydrophobic pocket in Bcl-xL via its noncanonical Trp120 residue and conserved Leu123 residue. This binding pocket is ~2 Å away from the canonical BH3-only binding pocket in structures of Bcl-xL with proapoptotic BH3-only proteins. Mutations altering Trp120 and Leu123 in HBx impair its binding to Bcl-xL in vitro and HBV replication in vivo, confirming the importance of this motif to HBV. A HBx BH3-like peptide, HBx-aa113-135, restores HBV replication from a HBx-null HBV replicon, while a shorter peptide, HBx-aa118-127, inhibits HBV replication. These results provide crucial structural and functional insights into drug designs for inhibiting HBV replication and treating HBV patients.
HBV pol plays a critical role in the replication of hepatitis B virus (HBV). Previous studies conducted on HBV pol have produced limited evidence on HBV pol expression due to the lack of effective detection methods. The present study used the HBV pol (159–406 aa) protein as a target to screen for specific monoclonal antibodies that recognize HBV pol and subsequently evaluate their diagnostic and therapeutic value. Four antibodies (P3, P5, P12, P20) against HBV pol were obtained. Among them, the P20 antibody indicated optimal binding with HBV pol as demonstrated by Western blotting (WB) in a cell model transfected with the HBV genome. We also expressed P5 and P12 antibodies in mouse liver cells by transfection and the results indicated significant antiviral effects caused by these two antibodies especially P12. In summary, the present study established an antibody which was denoted P20. This antibody can be used to detect HBV pol expression by four HBV genomes via WB analysis. In addition, the antibody denoted P12 could exert antiviral effects via intracellular expression, which may provide a promising approach for the treatment of chronic hepatitis B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.