The prior work on natural language inference (NLI) debiasing mainly targets at one or few known biases while not necessarily making the models more robust. In this paper, we focus on the model-agnostic debiasing strategies and explore how to (or is it possible to) make the NLI models robust to multiple distinct adversarial attacks while keeping or even strengthening the models' generalization power. We firstly benchmark prevailing neural NLI models including pretrained ones on various adversarial datasets. We then try to combat distinct known biases by modifying a mixture of experts (MoE) ensemble method (Clark et al., 2019) and show that it's nontrivial to mitigate multiple NLI biases at the same time, and that model-level ensemble method outperforms MoE ensemble method. We also perform data augmentation including text swap, word substitution and paraphrase and prove its efficiency in combating various (though not all) adversarial attacks at the same time. Finally, we investigate several methods to merge heterogeneous training data (1.35M) and perform model ensembling, which are straightforward but effective to strengthen NLI models.
We propose a simple and effective modeling framework for controlled generation of multiple, diverse outputs. We focus on the setting of generating the next sentence of a story given its context. As controllable dimensions, we consider several sentence attributes, including sentiment, length, predicates, frames, and automatically-induced clusters. Our empirical results demonstrate: (1) our framework is accurate in terms of generating outputs that match the target control values;(2) our model yields increased maximum metric scores compared to standard n-best list generation via beam search; (3) controlling generation with semantic frames leads to a stronger combination of diversity and quality than other control variables as measured by automatic metrics. We also conduct a human evaluation to assess the utility of providing multiple suggestions for creative writing, demonstrating promising results for the potential of controllable, diverse generation in a collaborative writing system.
Variational autoencoders (VAEs) are widely used for latent variable modeling of text. We focus on variations that learn expressive prior distributions over the latent variable. We find that existing training strategies are not effective for learning rich priors, so we add the importance-sampled log marginal likelihood as a second term to the standard VAE objective to help when learning the prior. Doing so improves results for all priors evaluated, including a novel choice for sentence VAEs based on normalizing flows (NF). Priors parameterized with NF are no longer constrained to a specific distribution family, allowing a more flexible way to encode the data distribution. Our model, which we call FlowPrior, shows a substantial improvement in language modeling tasks compared to strong baselines. We demonstrate that FlowPrior learns an expressive prior with analysis and several forms of evaluation involving generation.
Generative classifiers offer potential advantages over their discriminative counterparts, namely in the areas of data efficiency, robustness to data shift and adversarial examples, and zero-shot learning (Ng and Jordan, 2002;Yogatama et al., 2017;Lewis and Fan, 2019). In this paper, we improve generative text classifiers by introducing discrete latent variables into the generative story, and explore several graphical model configurations. We parameterize the distributions using standard neural architectures used in conditional language modeling and perform learning by directly maximizing the log marginal likelihood via gradient-based optimization, which avoids the need to do expectation-maximization. We empirically characterize the performance of our models on six text classification datasets. The choice of where to include the latent variable has a significant impact on performance, with the strongest results obtained when using the latent variable as an auxiliary conditioning variable in the generation of the textual input. This model consistently outperforms both the generative and discriminative classifiers in small-data settings. We analyze our model by using it for controlled generation, finding that the latent variable captures interpretable properties of the data, even with very small training sets.
While discriminative neural network classifiers are generally preferred, recent work has shown advantages of generative classifiers in term of data efficiency and robustness. In this paper, we focus on natural language inference (NLI). We propose GenNLI, a generative classifier for NLI tasks, and empirically characterize its performance by comparing it to five baselines, including discriminative models and large-scale pretrained language representation models like BERT. We explore training objectives for discriminative fine-tuning of our generative classifiers, showing improvements over log loss fine-tuning from prior work (Lewis and Fan, 2019). In particular, we find strong results with a simple unbounded modification to log loss, which we call the "infinilog loss". Our experiments show that GenNLI outperforms both discriminative and pretrained baselines across several challenging NLI experimental settings, including small training sets, imbalanced label distributions, and label noise. * Equal contribution. † Contribution during visiting TTIC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.