Topological semimetals with symmetry-protected band crossings have emerged as a rich landscape to explore intriguing electronic phenomena. Nonsymmorphic symmetries in particular have been shown to play an important role in protecting the crossings along a line (rather than a point) in momentum space. Here we report experimental and theoretical evidence for Dirac nodal line crossings along the Brillouin zone boundaries in PtPb4, arising from the nonsymmorphic symmetry of its crystal structure. Interestingly, while the nodal lines would remain gapless in the absence of spin–orbit coupling (SOC), the SOC, in this case, plays a detrimental role to topology by lifting the band degeneracy everywhere except at a set of isolated points. Nevertheless, the nodal line is observed to have a bandwidth much smaller than that found in density functional theory (DFT). Our findings reveal PtPb4 to be a material system with narrow crossings approximately protected by nonsymmorphic crystalline symmetries.
The success of topological band theory and symmetry-based topological classification significantly advances our understanding of the Berry phase. Based on the critical concept of topological obstruction, efficient theoretical frameworks, including topological quantum chemistry and symmetry indicator theory, were developed, making a massive characterization of real materials possible. However, the classification of magnetic materials often involves the complexity of their unknown magnetic structures, which are often hard to know from experiments, thus, hindering the topological classification. In this paper, we design a high-throughput workflow to classify magnetic topological materials by automating the search for collinear magnetic structures and the characterization of their topological natures. We computed 1049 chosen transition-metal compounds (TMCs) without oxygen and identified 64 topological insulators and 53 semimetals, which become 73 and 26 when U correction is further considered. Due to the lack of magnetic structure information from experiments, our high-throughput predictions provide insightful reference results and make the step toward a complete diagnosis of magnetic topological materials.
The success of topological band theory and symmetry-based topological classification significantly advances our understanding of the Berry phase. Based on the critical concept of topological obstruction, efficient theoretical frameworks, including topological quantum chemistry and symmetry indicator theory, were developed, making a massive characterization of real materials possible. However, the classification of magnetic materials often involves the complexity of their unknown magnetic structures, which are often hard to know from experiments, thus, hindering the topological classification. In this paper, we design a high-throughput workflow to classify magnetic topological materials by automating the search for collinear magnetic structures and the characterization of their topological natures. We computed 1049 chosen transition metal compounds (TMCs) without oxygen and identified 64 topological insulators and 53 semimetals, which become 73 and 26 when U correction is further considered. Due to the lack of magnetic structure information from experiments, our high-throughput predictions provide insightful reference results and make the first step towards a complete diagnosis of magnetic topological materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.