The wanton spread of hate speech on the internet brings great harm to society and families. It is urgent to establish and improve automatic detection and active avoidance mechanisms for hate speech. While there exist methods for hate speech detection, they stereotype words and hence suffer from inherently biased training. In other words, getting more affective features from other affective resources will significantly affect the performance of hate speech detection. In this paper, we propose a hate speech detection framework based on sentiment knowledge sharing. While extracting the affective features of the target sentence itself, we make better use of the sentiment features from external resources, and finally fuse features from different feature extraction units to detect hate speech. Experimental results on two public datasets demonstrate the effectiveness of our model.
Pre-trained distributed word representations have been proven useful in various natural language processing (NLP) tasks. However, the effect of words’ geometric structure on word representations has not been carefully studied yet. The existing word representations methods underestimate the words whose distances are close in the Euclidean space, while overestimating words with a much greater distance. In this paper, we propose a word vector refinement model to correct the pre-trained word embedding, which brings the similarity of words in Euclidean space closer to word semantics by using manifold learning. This approach is theoretically founded in the metric recovery paradigm. Our word representations have been evaluated on a variety of lexical-level intrinsic tasks (semantic relatedness, semantic similarity) and the experimental results show that the proposed model outperforms several popular word representations approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.