Attention-deficit/hyperactivity disorder (ADHD) is one of the most common brain diseases among children. The current criteria of ADHD diagnosis mainly depend on behavior analysis, which is subjective and inconsistent, especially for children. The development of neuroimaging technologies, such as magnetic resonance imaging (MRI), drives the discovery of brain abnormalities in structure and function by analyzing multimodal neuroimages for computer-aided diagnosis of brain diseases. This paper proposes a multimodal machine learning framework that combines the Boruta based feature selection and Multiple Kernel Learning (MKL) to integrate the multimodal features of structural and functional MRIs and Diffusion Tensor Images (DTI) for the diagnosis of early adolescent ADHD. The rich and complementary information of the macrostructural features, microstructural properties, and functional connectivities are integrated at the kernel level, followed by a support vector machine classifier for discriminating ADHD from healthy children. Our experiments were conducted on the comorbidity-free ADHD subjects and covariable-matched healthy children aged 9–10 chosen from the Adolescent Brain and Cognitive Development (ABCD) study. This paper is the first work to combine structural and functional MRIs with DTI for early adolescents of the ABCD study. The results indicate that the kernel-level fusion of multimodal features achieves 0.698 of AUC (area under the receiver operating characteristic curves) and 64.3% of classification accuracy for ADHD diagnosis, showing a significant improvement over the early feature fusion and unimodal features. The abnormal functional connectivity predictors, involving default mode network, attention network, auditory network, and sensorimotor mouth network, thalamus, and cerebellum, as well as the anatomical regions in basal ganglia, are found to encode the most discriminative information, which collaborates with macrostructure and diffusion alterations to boost the performances of disorder diagnosis.
The formation of black-odor water in urban rivers has a long history. It not only seriously affects the image of the city, but also easily breeds germs and damages the urban habitat. The prevention and treatment of urban black-odor water have long been important topics nationwide. "Action Plan for Prevention and Control of Water Pollution" issued by the State Council shows Chinese government's high attention to this issue. However, treatment and monitoring are inextricably linked. There are few studies on the large-scale monitoring of black-odor water, especially the cases of using unmanned aerial vehicle (UAV) to efficiently and accurately monitor the spatial distribution of urban river pollution. Therefore, in order to get rid of the limitations of traditional ground sampling to evaluate the point source pollution of rivers, the UAV-borne hyperspectral imagery was applied in this paper. It is hoped to grasp the pollution status of the entire river as soon as possible from the surface. However, the retrieval of multiple water quality parameters will lead to cumulative errors, so the Nemerow comprehensive pollution index (NCPI) is introduced to characterize the pollution level of urban water. In the paper, the retrieval results of six regression models including gradient boosting decision tree regression (GBDTR) were compared, trying to find a regression model for the retrieval NCPI in the current scenario. In the first study area, the retrieval accuracy of the training dataset (adjusted_R 2 = 0.978), and test dataset (adjusted_R 2 = 0.974) was higher than that of the other regression models. Although the retrieval effect of random forest is similar to that of GBDTR in both training accuracy and image inversion, it is more computationally expensive. Finally, the spatial distribution graphs of NCPI and its technical feasibility in monitoring pollution sources were investigated, in combination with field observations.
Attention deficit hyperactivity disorder (ADHD) is one of the most common psychiatric disorders in school-aged children. Its accurate diagnosis looks after patients’ interests well with effective treatment, which is important to them and their family. Resting-state functional magnetic resonance imaging (rsfMRI) has been widely used to characterize the abnormal brain function by computing the voxel-wise measures and Pearson’s correlation (PC)-based functional connectivity (FC) for ADHD diagnosis. However, exploring the powerful measures of rsfMRI to improve ADHD diagnosis remains a particular challenge. To this end, this paper proposes an automated ADHD classification framework by fusion of multiple measures of rsfMRI in adolescent brain. First, we extract the voxel-wise measures and ROI-wise time series from the brain regions of rsfMRI after preprocessing. Then, to extract the multiple functional connectivities, we compute the PC-derived FCs including the topographical information-based high-order FC (tHOFC) and dynamics-based high-order FC (dHOFC), the sparse representation (SR)-derived FCs including the group SR (GSR), the strength and similarity guided GSR (SSGSR), and sparse low-rank (SLR). Finally, these measures are combined with multiple kernel learning (MKL) model for ADHD classification. The proposed method is applied to the Adolescent Brain and Cognitive Development (ABCD) dataset. The results show that the FCs of dHOFC and SLR perform better than the others. Fusing multiple measures achieves the best classification performance (AUC = 0.740, accuracy = 0.6916), superior to those from the single measure and the previous studies. We have identified the most discriminative FCs and brain regions for ADHD diagnosis, which are consistent with those of published literature.
Although there are pronounced sex differences for psychiatric disorders, relatively little has been published on the heterogeneity of sex-specific genetic effects for these traits until very recently for adults. Much less is known about children because most psychiatric disorders will not manifest until later in life and existing studies for children on psychiatric traits such as cognitive functions are underpowered. We used results from publicly available genome-wide association studies for six psychiatric disorders and individual-level data from the Adolescent Brain Cognitive Development (ABCD) study and the UK Biobank (UKB) study to evaluate the associations between the predicted polygenic risk scores (PRS) of these six disorders and observed cognitive functions, behavioral and brain imaging traits. We further investigated the mediation effects of the brain structure and function, which showed heterogeneity between males and females on the correlation between genetic risk of schizophrenia and fluid intelligence. There was significant heterogeneity in genetic associations between the cognitive traits and psychiatric disorders between sexes. Specifically, the PRSs of schizophrenia of boys showed stronger correlation with eight of the ten cognitive functions in the ABCD data set; whereas the PRSs of autism of females showed a stronger correlation with fluid intelligence in the UKB data set. Besides cognitive traits, we also found significant sexual heterogeneity in genetic associations between psychiatric disorders and behavior and brain imaging. These results demonstrate the underlying early etiology of psychiatric disease and reveal a shared and unique genetic basis between the disorders and cognition traits involved in brain functions between the sexes.
The quality control of variants from whole-genome sequencing data is vital in clinical diagnosis and human genetics research. However, current filtering methods (Frequency, Hard-Filter, VQSR, GARFIELD, and VEF) were developed to be utilized on particular variant callers and have certain limitations. Especially, the number of eliminated true variants far exceeds the number of removed false variants using these methods. Here, we present an adaptive method for quality control on genetic variants from different analysis pipelines, and validate it on the variants generated from four popular variant callers (GATK HaplotypeCaller, Mutect2, Varscan2, and DeepVariant). FVC consistently exhibited the best performance. It removed far more false variants than the current state-of-the-art filtering methods and recalled ~51-99% true variants filtered out by the other methods. Once trained, FVC can be conveniently integrated into a user-specific variant calling pipeline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.