Cannabinoid receptor 1 (CB1 receptor) controls several neuronal functions, including neurotransmitter release, synaptic plasticity, gene expression and neuronal viability. Downregulation of CB1 expression in the basal ganglia of patients with Huntington’s disease (HD) and animal models represents one of the earliest molecular events induced by mutant huntingtin (mHtt). This early disruption of neuronal CB1 signaling is thought to contribute to HD symptoms and neurodegeneration. Here we determined whether CB1 downregulation measured in patients with HD and mouse models was ubiquitous or restricted to specific striatal neuronal subpopulations. Using unbiased semi-quantitative immunohistochemistry, we confirmed previous studies showing that CB1 expression is downregulated in medium spiny neurons of the indirect pathway, and found that CB1 is also downregulated in neuropeptide Y (NPY)/neuronal nitric oxide synthase (nNOS)-expressing interneurons while remaining unchanged in parvalbumin- and calretinin-expressing interneurons. CB1 downregulation in striatal NPY/nNOS-expressing interneurons occurs in R6/2 mice, HdhQ150/Q150 mice and the caudate nucleus of patients with HD. In R6/2 mice, CB1 downregulation in NPY/nNOS-expressing interneurons correlates with diffuse expression of mHtt in the soma. This downregulation also occludes the ability of cannabinoid agonists to activate the pro-survival signaling molecule cAMP response element-binding protein in NPY/nNOS-expressing interneurons. Loss of CB1 signaling in NPY/nNOS-expressing interneurons could contribute to the impairment of basal ganglia functions linked to HD.
Monitoring of urine protein-to-creatinine ratios with each cycle may be unnecessary due to the low prevalence of grade 3 proteinuria observed. Additionally, urine protein-to-creatinine ratios may not provide adequate assessment of proteinuria toxicity associated with bevacizumab therapy. Potential cost savings opportunities for the institution can be realized with a cost-reductive monitoring algorithm that will utilize less costly laboratory techniques for patients at high risk of developing proteinuria.
In current infrastructure-as-a service (IaaS) cloud services, customers are charged for the usage of computing/storage resources only, but not the network resource. The difficulty lies in the fact that it is nontrivial to allocate network resource to individual customers effectively, especially for short-lived flows, in terms of both performance and cost, due to highly dynamic environments by flows generated by all customers. To tackle this challenge, in this paper, we propose an end-to-end Price-Aware Congestion Control Protocol (PACCP) for cloud services. PACCP is a network utility maximization (NUM) based optimal congestion control protocol. It supports three different classes of services (CoSes), i.e., best effort service (BE), differentiated service (DS), and minimum rate guaranteed (MRG) service. In PACCP, the desired CoS or rate allocation for a given flow is enabled by properly setting a pair of control parameters, i.e., a minimum guaranteed rate and a utility weight, which in turn, determines the price paid by the user of the flow. Two pricing models, i.e., a coarse-grained VM-Based Pricing model (VBP) and a fine-grained Flow-Based Pricing model (FBP), are proposed. The optimality of PACCP is verified by both large scale simulation and small testbed implementation. The price-performance consistency of PACCP are evaluated using real datacenter workloads. The results demonstrate that PACCP provides minimum rate guarantee, high bandwidth utilization and fair rate allocation, commensurate with the pricing models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.