Ruminal microbiota changes frequently with high grain diets and the occurrence of subacute ruminal acidosis (SARA). A grain-induced goat model of SARA, with durations of a significant decrease in the rumen pH value to less than 5.6 and an increase in the rumen lipopolysaccharides concentration, is constructed for real-time monitoring of bacteria alteration. Using 16 S rRNA gene sequencing, significant bacterial differences between goats from the SARA and healthy groups are identified at every hour for six continuous hours after feeding. Moreover, 29 common differential genera between two groups over 6 h after feeding are all related to the altered pH and lipopolysaccharides. Transplanting the microbiota from donor goats with SARA could induce colonic inflammation in antibiotic-pretreated mice. Overall, significant differences in the bacterial community and rumen fermentation pattern between the healthy and SARA dairy goats are real-time monitored, and then tested using ruminal microbe transplantation to antibiotic-treated mice.
Corn grain has a high starch content and is used as main energy source in ruminant diets. Compared with finely ground corn (FGC), steam-flaked corn (SFC) could improve the milk yield of lactating dairy cows and the growth performance of feedlot cattle, but the detailed mechanisms underlying those finding are unknown. The rumen microbiome breaks down feedstuffs into energy substrates for the host animals, and contributes to feed efficiency. Therefore, the current study was conducted to investigate the ruminal bacterial community changes of heifers fed differently processed corn (SFC or FGC) using 16S rRNA sequencing technologies, and to uncover the detailed mechanisms underlying the high performance of ruminants fed the SFC diet. The results revealed that different processing methods changed the rumen characteristics and impacted the composition of the rumen bacteria. The SFC diet resulted in an increased average daily gain in heifers, an increased rumen propionate concentration and a decreased rumen ammonia nitrogen concentration. The relative abundance of the phylum Firmicutes and Proteobacteria were tended to increase or significantly increased in the heifers fed SFC diet compared with FGC diet. In addition, the relative abundance of amylolytic bacteria of the genera Succinivibrio, Roseburia and Blautia were elevated, and the cellulolytic bacteria (Ruminococcaceae_UCG-014 and Ruminococcaceae_UCG-013) were decreased by the steam flaking method. Spearman correlation analysis between the ruminal bacteria and the microbial metabolites showed that the rumen propionate concentration was positively correlated with genera Succinivibrio and Blautia abundance, but negatively correlated with genera Ruminococcaceae_UCG-014 abundance. Evident patterns of efficient improvement in rumen propionate and changes in rumen microbes to further improve feed conversion were identified. This observation uncovers the potential mechanisms underlying the increased efficiency of the SFC processing method for enhancing ruminant performance.
Starch digestion in the small intestine in ruminants is relatively lower compared with that in monogastric animals, likely due to low pancreatic α-amylase secretion. Previous studies suggested that leucine could increase pancreatic α-amylase secretion in the small intestine of heifers cannulated with abomasal, duodenal, and ileal catheters. However, the surgical procedures probably have an effect on pancreatic function. Thus, we used rumen-protected leucine (RP-Leu) to explore its effect on small intestinal digestion of starch in calves without any surgery in 3 experiments. The first experiment was to explore whether RP-Leu could improve post-ruminal starch digestion in 5-mo-old calves (158 ± 19 kg body weight ± standard deviation). We found that RP-Leu did not affect rumen fermentation profile or wholetract starch digestibility, but it increased blood glucose concentration and fecal pH and decreased fecal propionate molar proportion. Additionally, RP-Leu increased fibrolytic genera Ruminiclostridium and Pseudobutyrivibrio and decreased the amylolytic genus of Faecalibacterium. The second experiment compared RP-Leu and rumen-protected lysine (RP-Lys) for their effects on post-ruminal starch digestion in 6-mo-old calves (201 ± 24 kg body weight). The responses of blood glucose concentration, fecal pH, fecal propionate proportion, and starch digestibility to RP-Leu supplementation were similar to those observed in experiment 1. Cellulolytic family Ruminococcaceae and Bacteroidales BS11 gut group tended to be increased by RP-Leu. In contrast, RP-Lys showed no significant influence on the above measurements. The third experiment determined the interaction between RP-Leu and rumen-escape starch (RES) on the small intestinal digestion of starch in 8-mo-old calves (289 ± 26 kg body weight). An interaction between RP-Leu and RES levels was observed in fecal butyrate concentration and the relative abundance of family Bacteroidaceae, and genera Ruminococcaceae UCG-005 and Bacteroides. We found that RP-Leu tended to increase the abundance of fecal Firmicutes and decrease Spirochaetae. In conclusion, RP-Leu, but not RP-Lys, increased blood glucose concentration and decreased the amount of starch fermented in the hindgut in a RES dose-dependent manner, suggesting that RP-Leu might stimulate starch digestion in the small intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.