The specific 26S proteasome inhibitor bortezomib (BZ) potently induces autophagy, endoplasmic reticulum (ER) stress and apoptosis in multiple myeloma (MM) cell lines (U266, IM-9 and RPMI8226). The macrolide antibiotics including concanamycin A, erythromycin (EM), clarithromycin (CAM) and azithromycin (AZM) all blocked autophagy flux, as assessed by intracellular accumulation of LC3B-II and p62. Combined treatment of BZ and CAM or AZM enhanced cytotoxicity in MM cell lines, although treatment with either CAM or AZM alone exhibited almost no cytotoxicity. This combination also substantially enhanced aggresome formation, intracellular ubiquitinated proteins and induced the proapoptotic transcription factor CHOP (CADD153). Expression levels of the proapoptotic genes transcriptionally regulated by CHOP (BIM, BAX, DR5 and TRB3) were all enhanced by combined treatment with BZ plus CAM, compared with treatment with each reagent alone. Like the MM cell lines, the CHOP+/+ murine embryonic fibroblast (MEF) cell line exhibited enhanced cytotoxicity and upregulation of CHOP and its transcriptional targets with a combination of BZ and one of the macrolides. In contrast, CHOP−/− MEF cells exhibited resistance against BZ and almost completely canceled enhanced cytotoxicity with a combination of BZ and a macrolide. These data suggest that ER stress-mediated CHOP induction is involved in pronounced cytotoxicity. Simultaneously targeting two major intracellular protein degradation systems such as the ubiquitin-proteasome system by BZ and the autophagy-lysosome system by a macrolide antibiotic enhances ER stress-mediated apoptosis in MM cells. This result suggests the therapeutic possibility of using a macrolide antibiotic with a proteasome inhibitor for MM therapy.
The abnormal m6A modification caused by m6A modulators is a common feature of various tumors; however, little is known about which m6A modulator plays the most important role in triple-negative breast cancer (TNBC). In this study, when analyzing the influence of m6A modulators ( METTL3, METTL14, WTAP, FTO , and ALKBH5 ) on the prognosis of breast cancer, especially in TNBC using several on-line databases, methyltransferase-like 3 ( METTL3 ) was found to have low expression in breast cancer, and was closely associated with short-distance-metastasis-free survival in TNBC. Further investigation showed that knockdown of METTL3 could enhance the ability of migration, invasion, and adhesion by decreasing m6A level in TNBC cell lines. Collagen type III alpha 1 chain ( COL3A1 ) was identified and verified as a target gene of METTL3 . METTL3 could down-regulate the expression of COL3A1 by increasing its m6A methylation, ultimately inhibiting the metastasis of TNBC cells. Finally, with immunohistochemistry staining in breast cancer tissues, it was proved that METTL3 expression was negatively correlated with COL3A1 in TNBC, but not in non-TNBC. This study demonstrated the potential mechanism of m6A modification in metastasis and provided potential targets for treatment in TNBC.
These authors contributed equally to this workBackground: Lung cancer is the leading cause of cancer-related death worldwide. Although the macrophages can affect the development of tumor, the contribution of macrophages to the prognosis of non-small-cell lung cancer (NSCLC) is still controversial. Moreover, anti-PD-1 therapy can redirect macrophages from an M2 to an M1 phenotype, suggesting that tumor PD-L1 may affect the prognostic role of macrophages. Therefore, in this study, we aimed to display a macrophage landscape to clarify the function of macrophages, considering the localization and polarization of the macrophages, and evaluate the effect of M2 macrophages and tumor PD-L1 in combination on the prognosis of NSCLC. Methods: We performed multiplex quantitative immunofluorescence staining of pan-cytokeratin (CK), CD68, CD163, PD-L1, and DAPI on one tissue specimen simultaneously from 137 NSCLC patients. Results: M2 macrophages, involved marginM2 (M2 macrophages in tumor stroma), and centralM2 (M2 macrophages infiltrating into tumor islets) increased as the tumor stage increased. More macrophages were found in lung squamous cell carcinoma (LUSC) patients, patients with wild-type EGFR, and smokers than in patients with lung adenocarcinoma (LUAD), patients with EGFR mutations, and non-smokers. Infiltration of centralM2 was an independent prognostic factor of poor overall survival (OS) and disease-free survival (DFS) for NSCLC patients (P<0.05), which was superior to total macrophages and total M2 macrophages. Moreover, patients with centralM2 less PD-L1 − tumors showed the best OS and DFS, while the patients with centralM2 more PD-L1 + tumors showed the worst OS and DFS, and the two groups with centralM2 less PD-L1 + and centralM2 more PD-L1 − were in the middle (P=0.002, 0.034, respectively). Conclusion: Tumor islet-infiltrating M2 macrophages influence the prognosis of NSCLC patients. The analysis of M2 macrophages and tumor PD-L1 in combination may enhance the accuracy of prognostic prediction. This study provides a new understanding of macrophages in the development of NSCLC through the analysis of macrophage landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.