BackgroundYN968D1 (Apatinib) selectively inhibits phosphorylation of VEGFR-2 and tumor angiogenesis in mice model. The study was conducted to determine the maximum tolerated dose (MTD), safety profile, pharmacokinetic variables, and antitumor activity in advanced solid malignancies.MethodsThis dose-escalation study was conducted according to the Chinese State Food and Drug Administration (SFDA) recommendations in patients with advanced solid tumors to determine the MTD for orally administered apatinib. Doses of continuously administered apatinib were escalated from 250 mg. Treatment continued after dose-escalation phase until withdrawal of consent, intolerable toxicities, disease progression or death.ResultsForty-six patients were enrolled. Hypertension and hand-foot syndrome were the two dose-limiting toxicities noted at dose level of 1000 mg. MTD was determined to be 850 mg once daily. Pharmacokinetic analysis showed early absorption with a half-life of 9 hours. The mean half-life was constant over all dose groups. Steady-state conditions analysis suggested no accumulation during 56 days of once-daily administration. The most frequently observed drug-related adverse events were hypertension (69.5%, 29 grade 1-2 and 3 grade 3-4), proteinuria (47.8%, 16 grade 1-2 and 6 grade 3-4), and hand-foot syndrome (45.6%, 15 grade 1-2 and 6 grade 3-4). Among the thirty-seven evaluable patients, PR was noted in seven patients (18.9%), SD 24 (64.9%), with a disease control rate of 83.8% at 8 weeks.ConclusionsThe recommended dose of 750 mg once daily was well tolerated. Encouraging antitumor activity across a broad range of malignancies warrants further evaluation in selected populations.Trial registrationClinicalTrials.gov unique identifier: NCT00633490
Combined deficiency of factor V and factor VIII (F5F8D) is caused by mutations in one of 2 genes, either LMAN1 or MCFD2. Here we report the identification of mutations for 11 additional F5F8D families, including 4 novel mutations, 2 in MCFD2 and 2 in LMAN1. We show that a novel MCFD2 missense mutation identified here (D81Y) and 2 previously reported mutations (
The p38 MAPK and heat shock protein 27 (hsp27) form a signaling complex with serine/threonine kinase Akt and MAPK-activated protein kinase-2 (MK2), which plays an important role in controlling stress-induced apoptosis and reorganizing actin cytoskeleton. However, regulation of the complex is poorly understood. In this study, the interaction between p38 and hsp27 was visualized in single living L929 cells using fluorescence resonance energy transfer technology, while their association with Akt was examined by immunoprecipitation analysis. Under normal growth conditions, p38 kinase constitutively interacts with hsp27. When cells were exposed to H 2 O 2 or stimulated by arachidonic acid, this interaction was disrupted. However, inhibition of the activation of p38 and Akt by selective inhibitors or overexpression of the kinase-dead mutant of p38 diminished such effects. Furthermore, mutation of phosphorylation sites of hsp27 renders the interaction resistant to H 2 O 2 and arachidonic acid. It was interesting to find that the interaction disappeared in the cells from MK2-knock-out mice or the cells treated with lemptomycin B that blocks export of MK2 from nucleus to cytosol. However, MK2 is not required for the association of hsp27 with Akt. This study suggests that MK2 mediates the incorporation of p38 into the pre-existing complex of hsp27 with Akt. Phosphorylation of hsp27 finally breaks the signaling complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.