Xinglou Chengqi (XLCQ) decoction, composed of three botanical drugs and one inorganic drug, is used in clinics during the treatment of acute stroke complicated with Tanre Fushi (TRFS) syndrome in China. However, its active ingredients and the molecular mechanism have not been clarified. So, we aimed to preliminarily characterize its chemical constituents and investigate its pharmacological mechanisms using an integrative pharmacology strategy, including component analysis, network prediction, and experimental verification. We employed UPLC-QTOF-MS/MS to describe the chemical profile of XLCQ, Integrative Pharmacology-based Network Computational Research Platform of Traditional Chinese Medicine (TCMIP v2.0, http://www.tcmip.cn/), to assist in identifying the chemical components and predict the putative molecular mechanism against acute stroke complicated with TRFS, and LPS-stimulated BV-2 cells to verify the anti-neuroinflammatory effects of luteolin, apigenin, and chrysoeriol. Altogether, 197 chemical compounds were identified or tentatively characterized in the water extraction of XLCQ, 22 of them were selected as the key active constituents that may improve the pathological state by regulating 27 corresponding targets that are mainly involved in inflammation/immune-related pathways, and furthermore, luteolin, apigenin, and chrysoeriol exhibited good anti-neuroinflammatory effects from both protein and mRNA levels. In summary, it is the first time to employ an integrative pharmacology strategy to delineate 22 constituents that may improve the pathological state of stroke with TRFS by regulating 27 corresponding targets, which may offer a highly efficient way to mine the scientific connotation of traditional Chinese medicine prescriptions. This study might be a supplement for the deficiency of the basic research of XLCQ.
The pathogenesis of cardiorenal syndrome (CRS) is very complex, and currently there is no effective treatment for CRS. Higenamine (HI) has been shown to improve cardiac function in rats with heart failure. However, the role of higenamine in CRS remains unknown. Here, in vitro, higenamine treatment markedly reduced neonatal rat cardiac fibroblast collagen synthesis and inhibited neonatal rat cardiac myocyte hypertrophy. In our study, a rat model of type 2 CRS was induced by left anterior descending coronary artery ligation combined with 5/6 subtotal nephrectomy (STNx). Higenamine treatment decreased serum creatinine (Scr), blood urea nitrogen, and brain natriuretic peptide levels and was capable of improving left ventricular remodeling and systolic function in CRS rats, accompanied with decreased expression of transforming growth factor-β1 (TGF-β1), α–smooth muscle actin (α-SMA) and collagen I (Col1A1). Moreover, higenamine significantly inhibited the protein expression of phosphorylated apoptosis signal-regulated kinase 1 (p-ASK1) and downstream mitogen-activated protein kinases (MAPK) (ERK, P38)/NF-κB in cardiorenal tissues of CRS rats and neonatal rat cardiac fibroblast/neonatal rat cardiac myocyte cells. Our study demonstrated that higenamine improved cardiorenal function in CRS rats and attenuated heart and kidney fibrosis possibly via targeting ASK1/MAPK (ERK, P38)/NF-κB signaling pathway. This finding extends our knowledge on the role of higenamine in cardiorenal fibrosis, providing a potential target to prevent the progression of CRS.
Wang Bi tablet (WBT) is used to treat rheumatoid arthritis (RA) in China. We employed integrative pharmacology, including rapid analysis of chemical composition, pharmacological experiment, and network pharmacology analysis, to elucidate the active components and mechanism underlying the effect of WBT against RA. The chemical fingerprint of WBT was revealed by UPLC-QTOF-MS/MS, and the chemical composition was identified. The anti-inflammatory effect of WBT was evaluated in TNF-α-stimulated RAW264.7 cells by ELISA and transcriptome sequencing. Network pharmacology analysis, functional enrichment analysis, and network visualization were performed. A total of 293 chemical constituents were preliminarily identified or tentatively characterized in WBT extract, and they effectively inhibited inflammatory response in TNF-α-stimulated RAW264.7 cells. Forty-eight key active constituents were identified based on high-frequency binding to hub targets and their corresponding targets number. Next, 135 corresponding hub genes, which may be the putative targets of WBT in treating RA, were selected. Functionally, the putative targets were significantly associated with the inflammatory immune response regulation module, energy metabolism regulation module, and cell function regulation module, corresponding to the traditional efficacy of WBT. In summary, this study revealed, for the first time using integrative pharmacology, that WBT may attenuate RA through the inflammation-immune regulation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.