To obtain stable and ultrafine Pt nanoclusters, a trigonal prismatic coordination cage with the sulfur atoms on the edges was solvothermally synthesized to confine them. In the structure of {Ni(TC4A-SO)(TDC) (HO)} (HTC4A-SO = p-tert-butylsulfonylcalix[4]arene; HTDC = 2,5-thiophenedicarboxylic acid), three Ni-(TC4A-SO) SBUs are bridged by three TDC ligands into a triangle and two such triangles are pillared by three pairs of TDC ligands to form a trigonal prism. The cage cavity has 12 sulfur atoms on the surface. Because of the porous structure and strong covalent interaction between metal and sulfur, ultrafine Pt nanoclusters composed of less than ∼18 Pt atoms can be facilely confined in the present trigonal prismatic cage (Pt@CIAC-121). The as-synthesized Pt NCs exhibit higher electrocatalytic activity than commercial Pt/C toward hydrogen evolution reaction.
We report a nonenzymatic wearable sensor for electrochemical analysis of perspiration glucose. Multipotential steps are applied on a Au electrode, including a high negative pretreatment potential step for proton reduction which produces a localized alkaline condition, a moderate potential step for electrocatalytic oxidation of glucose under the alkaline condition, and a positive potential step to clean and reactivate the electrode surface for the next detection. Fluorocarbon-based materials were coated on the Au electrode for improving the selectivity and robustness of the sensor. A fully integrated wristband is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a smartphone app via Bluetooth.
We report a Johnson hexadecahedronal coordination cage, constructed via 10 Ni4-p-tert-butylthiacalix[4]arene (Ni4-TC4A) units as vertices and 16 5-(pyridin-4-yl)isophthalate (PIP) ligands as tiles. It features a gyroelongated square bipyramidal geometry, equivalent to two square pyramids pillared by a square antiprism, a J17 Johnson solid. Remarkably, the cage compound exhibits a much higher uptake capacity of C3H8 than CH4, representing a promising material for separation of these two gases. In contrast, Co4-TC4A units are linked by PIP ligands and rare {Co4O4Cl2} clusters, providing a one-dimensional bamboo stick-like polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.