Graphene has attracted a lot of attention for ultracapacitor electrodes because of its high electrical conductivity, high surface area, and superb chemical stability. However, poor volumetric capacitive performance of typical graphene-based electrodes has hindered their practical applications because of the extremely low density. Herein we report a scalable synthesis method of holey graphene (h-Graphene) in a single step without using any catalysts or special chemicals. The film made of the as-synthesized h-Graphene exhibited relatively strong mechanical strength, 2D hole morphology, high density, and facile processability. This scalable one-step synthesis method for h-Graphene is time-efficient, cost-efficient, environmentally friendly, and generally applicable to other two-dimensional materials. The ultracapacitor electrodes based on the h-Graphene show a remarkably improved volumetric capacitance with about 700% increase compared to that of regular graphene electrodes. Modeling on individual h-Graphene was carried out to understand the excellent processability and improved ultracapacitor performance.
In this work, we report transistors made of van der Waals materials on a mesoporous paper with a smooth nanoscale surface. The aqueous transistor has a novel planar structure with source, drain, and gate electrodes on the same surface of the paper, while the mesoporous paper is used as an electrolyte reservoir. These transistors are enabled by an all-cellulose paper with nanofibrillated cellulose (NFC) on the top surface that leads to an excellent surface smoothness, while the rest of the microsized cellulose fibers can absorb electrolyte effectively. Based on two-dimensional van der Waals materials, including MoS2 and graphene, we demonstrate high-performance transistors with a large on-off ratio and low subthreshold swing. Such planar transistors with absorbed electrolyte gating can be used as sensors integrated with other components to form paper microfluidic systems. This study is significant for future paper-based electronics and biosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.