Recently, metal coordination has been widely utilized to fabricate high-performance hydrogels, but conventional metalbased hydrogels face some drawbacks, such as staining or acid lability. In the present study, a novel kind of colorless Zr(IV)crosslinked polyacrylamide/polyanionic cellulose (PAM/PAC) composite hydrogel with unique acid resistance was constructed via acrylamide polymerization in a PAC solution, followed by posttreatment in a zirconium oxychloride (ZrOCl 2 ) solution. The prepared gels were characterized in terms of Fourier transform infrared spectroscopy, scanning electron microscopy, and tensile and compressive mechanics, as well as acid resistance. Inside the gels, the synergistic action of hydrogen bonding and Zr(IV) coordination is responsible for their improved mechanical properties and good energy dissipation ability. One hydrogel with nearly 90 wt % of water content can sustain approximately 5 MPa of compression stress at 90% strain without damage. Both microscopic network structures and macroscopic mechanics demonstrate facile adjustability via changing the PAC dosages in polymerization and/or ZrOCl 2 concentrations in posttreatment. Moreover, the gels present unexpected acid resistance due to the strong Zr(IV) coordination with PAC, demonstrating their potential application as hydrogel electrolytes in supercapacitors. The current work provides a new approach to fabricate metal coordination-based high strength, colorless hydrogels with acid resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.