In this paper, we consider a sensing-based spectrum sharing scenario in cognitive radio networks where the overall objective is to maximize the sum-rate of each cognitive radio user by optimizing jointly both the detection operation based on sensing and the power allocation, taking into account the influence of the sensing accuracy and the interference limitation to the primary users. The resulting optimization problem for each cognitive user is non-convex, thus leading to a non-convex game, which presents a new challenge when analyzing the equilibria of this game where each cognitive user represents a player. In order to deal with the non-convexity of the game, we use a new relaxed equilibria concept, namely, quasi-Nash equilibrium (QNE). A QNE is a solution of a variational inequality obtained under the first-order optimality conditions of the player's problems, while retaining the convex constraints in the variational inequality problem. In this work, we state the sufficient conditions for the existence of the QNE for the proposed game. Specifically, under the so-called linear independent constraint qualification, we prove that the achieved QNE coincides with the NE. Moreover, a distributed primal-dual interior point optimization algorithm that converges to a QNE of the proposed game is provided in the paper, which is shown from the simulations to yield a considerable performance improvement with respect to an alternating direction optimization algorithm and a deterministic game.
Driven by the explosion transmission and computation requirement in 5G vehicular networks, mobile edge computing (MEC) attracts more attention than centralized cloud computing. The advantage of MEC is to provide a large amount of computation and storage resources to the edge of networks so as to offload computation-intensive and delay-sensitive applications from vehicle terminals. However, according to the mobility of vehicle terminals and the time varying traffic load, the optimal task offloading decisions is crucial. In this paper, we consider the uplink transmission from vehicles to road side units in the vehicular network. A dynamic task offloading decision for flexible subtasks is proposed to minimize the utility, which includes energy consumption and packet drop rate. Furthermore, a computation resource allocation scheme is introduced to allocate the computation resources of MEC server due to the differences in the computation intensity and the transmission queue of each vehicle. Consequently, a Lyapunov-based dynamic offloading decision algorithm is proposed, which combines the dynamic task offloading decision and computation resource allocation, to minimize the utility function while ensuring the stability of the queue. Finally, simulation results demonstrate that the proposed algorithm could achieve a significant improvement in the utility of vehicular networks compared with comparison algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.