Immunoglobin A (IgA) vasculitis (IgAV), formerly called the Henoch-Schönlein purpura (HSP), is a small vessel vasculitis, characterized by IgA1-dominant immune deposition at diseased vessel walls. IgAV is the most common form of vasculitis in children; typical symptoms include palpable purpura, arthritis or arthralgia, abdominal pain, and hematuria or proteinuria. Galactose-deficient IgA1 is detected in the tissues of the kidney and skin in patients with IgAV; it forms immune complexes leading to subsequent immune reactions and injuries. This report provides the recent advances in the understanding of environmental factors, genetics, abnormal innate and acquired immunity, and the role of galactose-deficient IgA1 immunocomplexes in the pathogenesis of IgAV.
Monoclonal antibodies (mAbs) encoded by targeting the spike receptor-binding domain (RBD) have been isolated from different COVID-19 patients. However, the existence and prevalence of shared VH3-53-encoded antibodies in the antibody repertoires is not clear. Using antibody repertoire sequencing, we found that the usage of VH3-53 increased after SARS-CoV-2 infection. A highly shared VH3-53-J6 clonotype was identified in 9 out of 13 COVID-19 patients. This clonotype was derived from convergent gene rearrangements with few somatic hypermutations and was evolutionary conserved. We synthesized 34 repertoire-deduced novel VH3-53-J6 heavy chains and paired with a common IGKV1-9 light chain to produce recombinant mAbs. Most of these recombinant mAbs (23/34) possess RBD binding and virus-neutralizing activities, and recognize ACE2 binding site via the same molecular interface. Our computational analysis, validated by laboratory experiments, revealed that VH3-53 antibodies targeting RBD are commonly present in COVID-19 patients' antibody repertoires, indicating many people have germline-like precursor sequences to rapidly generate SARS-CoV-2 neutralizing antibodies. Moreover, antigenspecific mAbs can be digitally obtained through antibody repertoire sequencing and computational analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.