The stock market is an important part of the capital market, and the research on the price fluctuation of the stock market has always been a hot topic for scholars. As a dynamic and complex system, the stock market is affected by various factors. However, with the development of information technology, information presents multisource and heterogeneous characteristics, and the transmission speed and mode of information have changed greatly. The explanation and influence of multi-source and heterogeneous information on stock market price fluctuations need further study. In this paper, a graph fusion and embedding method for multi-source heterogeneous information of Chinese stock market is established. Relational dimension information is introduced to realize the effective fusion of multi-source heterogeneous data information. A multi-attention graph neural network based on nodes and semantics is constructed to mine the implied semantics of fusion graph data and capture the influence of multi-source heterogeneous information on stock market price fluctuations. Experiments show that the proposed multi-source heterogeneous information fusion methods is superior to tensor or vector fusion method, and the constructed multi-attention diagram neural network has a better ability to explain stock market price fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.