In recent years, significant progress has been obtained in object detection using Convolutional Neural Networks (CNNs). However, owing to the particularity of Remote Sensing Images (RSIs), common object detection methods are not well suited for RSIs. Aiming at the difficulties in RSIs, this paper proposes an object detection method based on the Dense Feature Fusion Path Aggregation Network (DFF-PANet). Firstly, for better improving the detection performance of small and medium-sized instances, we propose Feature Reuse Module (FRM), which can integrate semantic and location information contained in feature maps; this module can reuse feature maps in the backbone to enhance the detection capability of small and medium-sized instances. After that, we design the DFF-PANet, which can help feature information extracted from the backbone to be fused more efficiently, and thus cope with the problem of external interference factors. We performed experiments on the Dataset of Object deTection in Aerial images (DOTA) dataset and the HRSC2016 dataset; the accuracy reached 71.5% mAP, which exceeds most object detectors of one-stage and two-stages at present. Meanwhile, the size of our model is only 9.2 M, which satisfies the requirement of being lightweight. The experimental results demonstrate that our method not only has better detection accuracy but also maintains high efficiency in RSIs.
Ship targets in ORSIs (Optical Remote Sensing Images) have the characteristics of various scales, and most of them are medium and small-scale targets. When the existing target detection algorithms are applied to ship target detection in ORSIs, the detection accuracy is low. There are two main reasons for the above problems, one is the mismatch of the receptive fields, and the other is the lack of feature information. For resolving the problem that multi-scale ship targets are difficult to detect, this paper proposes a ship target detection algorithm based on feature enhancement. Firstly, EIRM (Elastic Inception Residual Module) is proposed for feature enhancement, which can capture feature information of different dimensions and provide receptive fields of different scales for mid- and low-level feature maps. Secondly, the SandGlass-L block is proposed by replacing the ReLu6 activation function of the SandGlass block with the Leaky ReLu activation function. Leaky ReLu solves the problem of 0 output when ReLu6 has negative input, so the SandGlass-L block can retain more feature information. Finally, based on SandGlass-L, SGLPANet (SandGlass-L Path Aggregation Network) is proposed to alleviate the problem of information loss caused by dimension transformation and retain more feature information. The backbone network of the algorithm in this paper is CSPDarknet53, and the SPP module and EIRM act after the backbone network. The neck network is SGLPANet. Experiments on the NWPU VHR-10 dataset show that the algorithm in this paper can well solve the problem of low detection accuracy caused by mismatched receptive fields and missing feature information. It not only improves the accuracy of ship target detection, but also achieves good results when extended to other categories. At the same time, the extended experiments on the LEVIR dataset show that the algorithm also has certain applicability on different datasets.
As we all know, waste pollution is one of the most serious environmental issues in the world. Efficient detection of Solid Waste (SW) in aerial images can improve subsequent waste classification and automatic sorting on the ground. However, traditional methods have some problems, such as poor generalization and limited detection performance. This paper presents an Anchor-based Object Detector for Solid Waste in Aerial Images (SWDet). Specifically, we construct Asymmetric Deep Aggregation (ADA) network with structurally re-parameterized asymmetric blocks to extract waste features with inconspicuous appearance. Besides, considering the waste with blurred boundaries caused by the resolution of aerial images, this paper constructs Efficient Attention Fusion Pyramid Network (EAFPN) to obtain contextual information and multi-scale geospatial information via attention fusion. And the model can capture the scattering features of irregular shape waste. In addition, we construct the dataset for Solid Waste Aerial Detection (SWAD) by collecting aerial images of solid waste in Henan Province, China, to validate the effectiveness of our method. Experimental results show that SWDet outperforms most of existing methods for solid waste detection in aerial images. Code is available at https://github.com/shenhaibb/SWDet.
Due to the multiscale characteristics of ship targets in ORSIs (optical remote sensing images), ship target detection in ORSIs based on depth learning is still facing great challenges. Aiming at the low accuracy of multiscale ship target detection in ORSIs, this paper proposes a ship target detection algorithm based on multiscale feature enhancement based on YOLO v4. Firstly, an improved mixed convolution is introduced into the IRes (inverted residual block) to form an MIRes (mixed inverted residual block). The MIRes are used to replace the Res (residual block) in the deep CSP module of the backbone network to enhance the multiscale feature extraction capability of the backbone network. Secondly, for different scale feature maps’ perception fields, feature information, and the scale of the detected objects, the multiscale feature enhancement modules—SFEM (small scale feature enhancement module) and MFEM (middle scale feature enhancement module)—are proposed to enhance the feature information of the middle- and low-level feature maps, respectively, and then the enhanced feature maps are sent to the detection head for detection. Finally, experiments were implemented on the LEVIR-ship dataset and the NWPU VHR-10 dataset. The accuracy of the proposed algorithm in ship target detection reached 79.55% and 90.70%, respectively, which is improved by 3.25% and 3.56% compared with YOLO v4.
Aircraft, as one of the indispensable transport tools, plays an important role in military activities. Therefore, it is a significant task to locate the aircrafts in the remote sensing images. However, the current object detection methods cause a series of problems when applied to the aircraft detection for the remote sensing image, for instance, the problems of low rate of detection accuracy and high rate of missed detection. To address the problems of low rate of detection accuracy and high rate of missed detection, an object detection method for remote sensing image based on bidirectional and dense feature fusion is proposed to detect aircraft targets in sophisticated environments. On the fundamental of the YOLOv3 detection framework, this method adds a feature fusion module to enrich the details of the feature map by mixing the shallow features with the deep features together. Experimental results on the RSOD-DataSet and NWPU-DataSet indicate that the new method raised in the article is capable of improving the problems of low rate of detection accuracy and high rate of missed detection. Meanwhile, the AP for the aircraft increases by 1.57% compared with YOLOv3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.