This paper analyzed the mechanical characteristics of single electromagnet system and elastic track beam of EMS maglev train and established a five-dimensional dynamics model of single electromagnet-track beam coupled system with classical PD control strategy adopted for its levitation system. Then, based on the Hurwitz criterion and the high-dimensional Hopf bifurcation theory, the stability of the coupled system is analyzed; the existence of the Hopf bifurcation is discussed and the bifurcation direction and the stability of the periodic solution are determined with levitation control feedback coefficient kp as the bifurcation parameter; and numerical simulation is conducted to verify the validity of the theoretical analysis results. The results show that the Hurwitz algebra criterion can directly determine the eigenvalues and symbols of the dynamics system to facilitate the analysis on the stability of the system and the Hopf bifurcation without the necessity of calculating the specific eigenvalues; supercritical Hopf bifurcation will occur under the given parameters, that is, when kp<kp0, the real-time system is asymptotically stable, yet Hopf bifurcation occurs as kp increases gradually beyond kp0, with the stability of the system lost and a stable limit cycle branched.
Levitation stability is the very basis for the dynamic operation of Electromagnetic Suspension (EMS) medium-low speed maglev trains (MSMT). However, self-excited vibration tends to occur when the vehicle is standing still above the lightweight lines, which remains a major constraint to the promotion of medium-low speed maglev technology. In order to study the vertical vibration characteristics of the coupled system of MSMT when it is standing still above lightweight lines, levitation tests were carried out on two types of steel beams: steel beam and active girder of the turnout, with a newly developed maglev vehicle using levitation frames with mid-set air spring. Firstly, modal tests were carried out on the steel beam to determine its natural vibration characteristics; secondly, the acceleration signals and the dynamic displacement signals of the air spring obtained at each measurement point were analyzed in detail in both the time and frequency domains, and the vertical ride comfort was assessed by means of the calculated Sperling index. Subsequently, theoretical explanations were given for the occurrence of self-excited vibration of coupled system from the perspective of the vehicle-to-guideway vibration energy input. Results show that the eigen frequencies of the vehicle on the steel beam and the turnout are 9.65 Hz and 2.15 Hz, respectively, the former being close to the natural frequency of the steel beam while the latter being close to the natural frequency of the air spring suspension system, thus causing the self-excited vibration of the coupled system. It is recommended to either avoid the main eigen frequencies of the coupled system or to increase the damping of the corresponding vibration modes to guarantee a reliable coupled system for its long-term performance. These results may provide valuable references for the optimal design of medium-low speed maglev systems.
The steel turnout is one of the key components in the medium–low-speed maglev line system. However, the vehicle under active control is prone to vehicle–turnout coupled vibration, and thus, it is necessary to identify the vibration characteristics of this coupled system through field tests. To this end, dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line. Firstly, the dynamic response data of the coupled system under various operating conditions were obtained. Then, the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method, indicating a good agreement between the simulation results and the measured results; the acceleration response characteristics of the coupled system were analysed in detail, and the ride quality of the vehicle was assessed by Sperling index. Finally, the frequency distribution characteristics of the coupled system were discussed. All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.