Members of the teleost family Sciaenidae show significant variation in inner ear and swim bladder morphology as well as in the relationship between the swim bladder and the inner ear. In the silver perch (Bairdiella chrysoura), a Stellifer-group sciaenid, both the saccular and utricular otoliths are enlarged relative to those in other teleosts. Additionally, its swim bladder is two-chambered, and the anterior chamber surrounds the otic capsule and terminates lateral to the saccules. Structure and function of the auditory system of the silver perch were explored by using gross dissections, scanning electron microscopy, CT scan reconstruction, and auditory brainstem response approach. Several morphological specializations of the auditory system of the silver perch were found, including expansion of the utricular and lagenar otoliths, close proximity between the saccules and the utricles, deeply grooved sulci on the saccular otoliths, two-planar saccular sensory epithelia, and a unique orientation pattern of sensory hair cell ciliary bundles on the saccular sensory epithelium. It was determined that the silver perch can detect up to 4 kHz, with lowest auditory thresholds between 600 Hz and 1 kHz. Audition in the silver perch is comparable to that in the goldfish (Carassius auratus), a hearing "specialist." The morphological specializations of the inner ear and swim bladder of the silver perch may be linked to its enhanced hearing capabilities. The findings of this study support the proposal that sciaenids are excellent model species for investigating structure-function relations in the teleost auditory system.
The inner ear structure of Antimora rostrata and its coupling to the swim bladder were analyzed and compared with the inner ears of several shallow-water species that also have similar coupling. The inner ear of Antimora has a long saccular otolith and sensory epithelium as compared to many other fishes. Some parts of the membranous labyrinth are thick and rigid, while other parts are thinner but attached tightly to the bony capsule. The partially rigid membranous labyrinth, along with its intimate connection to the swim bladder, may help the inner ear follow the sound oscillations from the swim bladder with better precision than would occur in a less rigid inner ear. In addition, the saccular sensory epithelium has an elaborate structure and an anterior enlargement that may be correlated with increased hearing sensitivity. Some of the features in the inner ear of Antimora may reflect the functional specialization of deep-water living and support the hypothesis that there is enhanced inner ear sensitivity in some deep-sea fishes.
Deep-sea fishes have evolved in dark or dimly lit environments devoid of the visual cues available to shallow-water species. Because of the limited opportunity for visual scene analysis by deep-sea fishes, it is reasonable to hypothesize that the inner ears of at least some such species may have evolved structural adaptations to enhance hearing capabilities in lieu of vision. As an initial test of this hypothesis, scanning electron microscopy was used to examine the structure of the inner ears of four deep-sea elopomorph species inhabiting different depths: Synaphobranchus kaupii, Synaphobranchus bathybius, Polyacanthonotus challengeri, and Halosauropsis macrochir. The shape of the sensory epithelia and hair cell ciliary bundle orientation of the saccule, lagena, and utricle, the three otolithic organs associated with audition and vestibular function, are described. The saccules of all four species have a common, alternating ciliary bundle orientation pattern. In contrast, the lagena exhibits more interspecific diversity in shape and ciliary bundle orientation, suggesting that it has special adaptations in these species. The macula neglecta, a sensory epithelium of unknown function, is present in all four species.
Inner ear structures are compared among three major genera of the deep-sea fish family Melamphaidae (bigscales and ridgeheads). Substantial interspecific variation is found in the saccular otoliths, including the presence of a unique otolithic "spur" in the genera Melamphaes and Poromitra. The variation in the saccular otolith is correlated with an increase in the number of hair bundle orientation groups on the sensory epithelia from the genera Scopelogadus to Poromitra to Melamphaes. The diverse structural variations found in the saccule may reflect the evolutionary history of these species. The sensory hair cell bundles in this family have the most variable shapes yet encountered in fish ears. In the saccule, most of the hair bundles are 15-20 lm high, an exceptional height for fish otolithic end organs. These bundles have large numbers of stereovilli, including some that reach the length of the kinocilium. In the utricle, the striolar region separates into two unusually shaped areas that have not been described in any other vertebrates. The brains in all species have a relatively small olfactory bulb and optic tectum, as well as an enlarged posterior cerebellar region that is likely to be involved in inner ear and lateral line (octavolateral) functions. Data from melamphaids support the hypothesis that specialized anatomical structures are found in the ears of some (if not most) deep-sea fishes, presumably enhancing their hearing sensitivity.
Loop-mediated isothermal amplification (LAMP) has gained wide popularity in the detection of Salmonella in foods owing to its simplicity, rapidity, and robustness. This multi-laboratory validation (MLV) study aimed to validate a Salmonella LAMP-based method against the United States Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) Chapter 5 Salmonella reference method in a representative animal food matrix (dry dog food). Fourteen independent collaborators from seven laboratories in the United States and Canada participated in the study. Each collaborator received two sets of 24 blind-coded dry dog food samples (eight uninoculated; eight inoculated at a low level, 0.65 MPN/25 g; and eight inoculated at a high level, 3.01 MPN/25 g) and initiated the testing on the same day. The MLV study used an unpaired design where different test portions were analyzed by the LAMP and BAM methods using different preenrichment protocols (buffered peptone water for LAMP and lactose broth for BAM). All LAMP samples were confirmed by culture using the BAM method. BAM samples were also tested by LAMP following lactose broth preenrichment (paired samples). Statistical analysis was carried out by the probability of detection (POD) per AOAC guidelines and by a random intercept logistic regression model. Overall, no significant differences in POD between the Salmonella LAMP and BAM methods were observed with either unpaired or paired samples, indicating the methods were comparable. LAMP testing following preenrichment in buffered peptone water or lactose broth also resulted in insignificant POD differences ( P > 0.05). The MLV study strongly supports the utility and applicability of this rapid and reliable LAMP method in routine regulatory screening of Salmonella in animal food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.