Diverse eukaryotic hosts produce virus-derived small interfering RNAs (siRNAs) to direct antiviral immunity by RNA interference (RNAi). However, it remains unknown whether the mammalian RNAi pathway has a natural antiviral function. Here, we show that infection of hamster cells and suckling mice by Nodamura virus (NoV), a mosquito-transmissible RNA virus, requires RNAi suppression by its B2 protein. Loss of B2 expression or its suppressor activity leads to abundant production of viral siRNAs and rapid clearance of the mutant viruses in mice. However, viral small RNAs detected during virulent infection by NoV do not have the properties of canonical siRNAs. These findings have parallels with the induction and suppression of antiviral RNAi by the related Flock house virus in fruit flies and nematodes and reveal a mammalian antiviral immunity mechanism mediated by RNAi.
On August 3, 2018, an outbreak of African swine fever in pigs was reported in China. We subjected a virus from an African swine fever–positive pig sample to phylogenetic analysis. This analysis showed that the causative strain belonged to the p72 genotype II and CD2v serogroup 8.
Although over 50 years have passed since its first laboratory description, intentional induction of immune tolerance to foreign antigens has remained an elusive clinical goal. We previously reported that the requirement for ABO compatibility in heart transplantation is not applicable to infants. Here, we show that ABO-incompatible heart transplantation during infancy results in development of B-cell tolerance to donor blood group A and B antigens. This mimics animal models of neonatal tolerance and indicates that the human infant is susceptible to intentional tolerance induction. Tolerance in this setting occurs by elimination of donor-reactive B lymphocytes and may be dependent upon persistence of some degree of antigen expression. These findings suggest that intentional exposure to nonself A and B antigens may prolong the window of opportunity for ABO-incompatible transplantation, and have profound implications for clinical research on tolerance induction to T-independent antigens relevant to xenotransplantation.
Matrix metalloproteinase-2 (MMP-2) is best understood for its biological actions outside the cell. However, MMP-2 also localizes to intracellular compartments and the cytosol where it has several substrates, including troponin I (TnI). Despite a growing list of cytosolic substrates, we currently do not know the mechanism(s) that give rise to the equilibrium between intracellular and secreted MMP-2 moieties. Therefore, we explored how cells achieve the unique distribution of this protease. Our data show that endogenous MMP-2 targets inefficiently to the endoplasmic reticulum (ER) and shows significant amounts in the cytosol. Transfection of canonical MMP-2 essentially reproduces this targeting pattern, suggesting it is the quality of the MMP-2 signal sequence that predominantly determines MMP-2 targeting. However, we also found that human cardiomyocytes express an MMP-2 splice variant which entirely lacks the signal sequence. Like the fraction of ER-excluded, full-length MMP-2, this variant MMP-2 is restricted to the cytosol and specifically enhances TnI cleavage upon hypoxia-reoxygenation injury in cardiomyocytes. Together, our findings describe for the first time a set of mechanisms that cells utilize to equilibrate MMP-2 both in the extracellular milieu and intracellular, cytosolic locations. Our results also suggest approaches to specifically investigate the overlooked intracellular biology of MMP-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.