BackgroundKnowledge-based planning (KBP) is a promising technique that can improve plan quality and increase planning efficiency. However, no attempts have been made to extend the domain of KBP for planners with different planning experiences so far. The purpose of this study was to quantify the potential gains for planners with different planning experiences after implementing KBP in intensity modulated radiation therapy (IMRT) plans for left-sided breast cancer patients.MethodsThe model libraries were populated with 80 expert clinical plans from treated patients who previously received left-sided breast-conserving surgery and IMRT with simultaneously integrated boost. The libraries were created on the RapidPlanTM. 6 planners with different planning experiences (2 beginner planners, 2 junior planners and 2 senior planners) generated manual and KBP optimized plans for additional 10 patients, similar to those included in the model libraries. The plan qualities were compared between manual and KBP plans.ResultsAll plans were capable of achieving the prescription requirement. There were almost no statistically significant differences in terms of the planning target volume (PTV) coverage and dose conformality. It was demonstrated that the doses for most of organs-at-risk (OARs) were on average lower or equal in KBP plans compared to manual plans except for the senior planners, where the very small differences were not statistically significant. KBP data showed a systematic trend to have superior dose sparing at most parameters for the heart and ipsilateral lung. The observed decrease in the doses to these OARs could be achieved, particularly for the beginner and junior planners. Many differences were statistically significant.ConclusionsIt is feasible to generate acceptable IMRT plans after implementing KBP for left-sided breast cancer. KBP helps to effectively improve the quality of IMRT plans against the benchmark of manual plans for less experienced planners without any manual intervention. KBP showed promise for homogenizing the plan quality by transferring planning expertise from more experienced to less experienced planners.
Bacterial outer membrane vesicle (OMV) is a kind of spherical lipid bilayer nanostructure naturally secreted by bacteria, which has diverse functions such as intracellular and extracellular communication, horizontal gene transfer, transfer of contents to host cells, and eliciting an immune response in host cells. In this review, several methods including ultracentrifugation and precipitation for isolating OMVs were summarized. The latest progresses of OMVs in biomedical fields, especially in vaccine development, cancer treatment, infection control, and bioimaging and detection were also summarized in this review. We highlighted the importance of genetic engineering for the safe and effective application and in facilitating the rapid development of OMVs. Finally, we discussed the bottleneck problems about OMVs in preparation and application at present and put forward our own suggestions about them. Some perspectives of OMVs in biomedical field were also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.