The ring finger protein 8 (RNF8), a key component of protein complex crucial for DNA-damage response, consists of a forkhead-associated (FHA) domain and a really interesting new gene (RING) domain that enables it to function as an E3 ubiquitin ligase. However, the biological functions of RNF8 in estrogen receptor α (ERα)-positive breast cancer and underlying mechanisms have not been fully defined. Here, we have explored RNF8 as an associated partner of ERα in breast cancer cells, and co-activates ERα-mediated transactivation. Accordingly, RNF8 depletion inhibits the expression of endogenous ERα target genes. Interestingly, our results have demonstrated that RNF8 increases ERα stability at least partially if not all via triggering ERα monoubiquitination. RNF8 functionally promotes breast cancer cell proliferation. RNF8 is highly expressed in clinical breast cancer samples and the expression of RNF8 positively correlates with that of ERα. Up-regulation of ERα-induced transactivation by RNF8 might contribute to the promotion of breast cancer progression by allowing enhancement of ERα target gene expression. Our study describes RNF8 as a co-activator of ERα increases ERα stability via post-transcriptional pathway, and provides a new insight into mechanisms for RNF8 to promote cell growth of ERα-positive breast cancer.
MicroRNA-125b (miR-125b) has been implicated in a variety of diseases as either repressors or promoters, and plays crucial roles in many cellular processes such as cell differentiation, proliferation and apoptosis. Age-related cataract has become one of the most serious problems facing the aging population in the world. The purpose of this study was to investigate the role of miR-125b in the development of age-related cataract. We demonstrated that miR-125b was downregulated in both age-related cataract tissue and lens epithelial cell apoptosis induced by UV irradiation. We also identified the impact of miR-125b on apoptosis in a lens epithelial cell line. In vitro, miR-125b regulates human lens epithelial cell apoptosis at least in part by directly targeting p53. In addition,an inverse relationship between miR-125b and p53 expression was seen in age-related cataract tissue. In conclusion,this study suggests that miR-125b might be closely involved in the pathogenesis of cataract, and has the potential to be a diagnostic biomarker or even a therapeutic modality for cataract.
The therapeutic effect of intravitreal VCZ DDS on fungal endophthalmitis appears to be significantly better than intravitreal injection of VCZ. The optimal dose of VCZ in the DDS in this study was 1.2 mg.
The expression of Tert was up-regulated during the development of oxygen-induced retinal neovascularization. Inhibiting Tert expression with SiRNA is effective in suppressing retinal neovascularization, suggesting that telomerase may be a potential therapeutic target for treating proliferative retinopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.