This work describes the design, fabrication, and testing of an Archimedean spiral or spiral antenna using polymer extrusion 3D printing of polycarbonate base material. The spiral antenna design was simulated using CST Microwave StudioV R , and the resulting 3D printed antenna characterized in terms of return loss, directivity, and polarization. The antenna design was embedded into a 3D printed structure using a unique ultrasonic method while a ground plane was inserted through a thermal embedding process. These fabrication methods provide process flexibility, which allows multiple conductive antenna layers to be additively constructed in a single build sequence. The method described can be used to create unique electromagnetic structures such as waveguides directly in a 3D printed dielectric part. The spiral antenna was tested with three variations of microstrip feed line used to match 50X impedance and introduce a 1808 phase shift between the two arms of the spiral. These include a Duroid balun attached to feed of the antenna after fabrication, a Duroid balun embedded into the polycarbonate during fabrication, and the same microstrip design fabricated out of copper mesh and embedded into the structure using the polycarbonate as a dielectric substrate. The results of these three approaches will be discussed.
Glucagon-like peptide-1 (7-36) amide (GLP-1), a gut hormone released into the blood stream after feeding, can stimulate insulin secretion by potentiating the insulinotropic action of glucose. An expression vector pET-22bG8, encoding a fusion protein containing eight tandem repeat GLP-1 ([Ser(8), Gln(26), Asp(34)]-GLP-1) analogues, was constructed and transformed into the Escherichia coli BL21(DE3) strain over-expressing the His-tagged fusion protein under the IPTG promoter. SDS-PAGE and Western blot analysis demonstrated that the His-tagged GLP-1 fusion protein migrated as a single protein with a molecular weight of 32 kDa. Following chronic (10 days) oral administration (20 mg kg(-1) day(-1)) of the fusion protein to diabetic rats, serum glucose levels were significantly lowered from 26 +/- 2.5 to 7.9 +/- 1.4 mmol/l. Further studies are needed to evaluate the potential use for GLP-1 analogue short peptide in the treatment of diabetes mellitus.
The previous generations of cellular networks are almost packed in the UHF band with a frequency range of 300 MHz -3 GHz in the radio spectrum. Recently, the Ka-band is under investigation to be commercially used in next generation of cellular systems, due to the spectrum availability and the small size of the components. The main purpose of this paper is to design a wideband antenna element at 28 GHz, so that it can be used in the antenna arrays of next generation mobile networks. The proposed unit-cell is a proximity coupled stacked patch antenna. The antenna parameters and characteristics are investigated both through simulation and measurement. The antenna achieves a measured gain of 7.1 dB at 28 GHz. The measured impedance bandwidth and 1-dB gain bandwidth are 34.48 % and 17.4 %, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.