Molecular communications provide an attractive opportunity to precisely regulate biological signaling in nano-medicine applications of body area networks. In this paper, we utilize molecular communication tools to interpret how neural signals are generated in response to external stimuli. First, we propose a chain model of molecular communication system by considering three types of biological signaling through different communication media. Second, communication models of hormonal signaling, Ca2+ signaling and neural signaling are developed based on existing knowledge. Third, an amplify-and-forward relaying mechanism is proposed to connect different types of signaling. Simulation results demonstrate that the proposed communication system facilitates the information exchange between the neural system and nano-machines, and suggests that proper adjustment can optimize the communication system performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.