This paper carried out an experimental study on the critical heat flux during flow boiling of R134a in a vertical helically coiled tube. The length, inner diameter, coil diameter, and pitch of the test tube were 1.85 m, 8 mm, 205 mm, and 25 mm, respectively. Experiments cover the mass flux range of 190–400 kg·m−2·s−1, heat flux of 15–55 kW·m−2, inlet pressure of 0.8–1.1 MPa, and inlet vapor quality of 0.01–0.35. The effects of critical heat flux identification method, mass flux, system pressure, and inlet vapor quality on critical heat flux were presented. The critical heat flux obtained by the wall temperature rise method was larger than that obtained by the wall temperature oscillation method. The deviation of the critical heat flux corresponding to two methods, including wall temperature rises sharply above 10 ℃ and wall temperature drastic oscillation, was about 20% under the present experimental conditions. The critical heat flux increased with mass flux while it decreased with the inlet vapor quality and pressure. The experiment data were compared with four existing empirical correlations. A new correlation is proposed for critical heat flux prediction in vertical helical tubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.