Precise assessment of soil organic carbon (SOC) storage requires understanding how vegetation and soil physico‐chemical properties differ in SOC fractions. Therefore, we aimed to analyze the dynamics of aggregate‐associated, labile organic carbon (LOC) fractions corresponding to depth to clarify the effect of vegetation and soil properties on water stable aggregate (WSA) mineral adsorption in subtropical, red soil with five vegetation restoration regimes. The results showed that the large macro‐aggregate fraction dominated the degraded red soil, which had the highest content of dissolved organic carbon (DOC). WSA‐associated, easily oxidized organic carbon (EOC) varied from 6.26 to 20.02 g/kg and was not affected by vegetation types. Schima superba pure forest significantly increased DOC (0.38 g/kg on average) and particulate organic carbon (POC, 7.92 g/kg on average), which had the highest biomass. Along with soil depth, WSA‐associated POC declined, while exhibiting a growth trend with decreasing particle size, for example, the highest POC was found in <0.053 mm aggregates. The redundancy analysis ordination indicated that soil porosity and total nitrogen (TN) were the main soil parameters that explained the most variance. Meanwhile, the vegetation biomass, except for litter, were all significantly positively correlated with <0.053 mm aggregates. Leaf biomass played the most important role on DOC in macro‐aggregates with a 53.42% contribution. For aggregate‐related POC, the largest contribution was from the interactions between branch biomass and pH (47.78%) followed by TN (35.1%) of micro‐aggregate‐related POC. Leaf biomass, <0.053 mm aggregates, and TN can be used as indicators to evaluate the impact of vegetation restoration on WSA‐associated SOC fractions. Broad‐leaved forest or in combination with indigenous coniferous species was a better choice for SOC sequestration improvement in the study area for managing C supply, process, and flux in subtropical terrestrial ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.