A set of 224 recombinant inbred lines (RILs) derived from a narrow cross between two fresh eaten types (S94 (Northern China type) 9 S06 (Northern European type)) (Cucumis sativus L.) was used to construct a genetic linkage map. With the RILs a 257-point genetic map was constructed including 206 SRAPs, 22 SSRs, 25 SCARs, 1 STS, and three economically important morphological markers (small spines (ss), uniform immature fruit color (u), dull fruit skin (D)). The seven linkage groups covered 1005.9 cM with a mean marker interval of 3.9 cM.The ss locus was linked to D and u, and they were all on Linkage group 6. The RIL map contained a total of 51 sequence-specific markers, which made possible the comparison of molecular linkage maps developed in different laboratories. Using the F 6:7 derived families, a total of 78 QTLs were detected with relatively high LOD scores (2.9-84.4) for nine fruit-related traits (fruit weight, length, and diameter, fruit flesh thickness, seed-cavity diameter, fruit-stalk length, fruit pedicel length, length/diameter and length/stalk ratio) and three flower-related traits (first flower node, first female flower node and female flower ratios). Several sequence-anchor markers (CSWCT25, CS30, CMBR41, CS08 etc.) were closely linked with some QTLs for fruit weight, fruit length, fruit flesh thickness and sex expression, which can be used for the future marker-assisted selection to improve the fruit traits in cucumber breeding.
a b s t r a c tThe thematic and citation structures of Data and Knowledge Engineering (DKE) are identified based on text analysis and citation analysis of the bibliographic records of full papers published in the journal. Temporal patterns are identified by detecting abrupt increases of frequencies of noun phrases extracted from titles and abstracts of DKE papers over time. Conceptual structures of the subject domain are identified by clustering analysis. Concept maps and network visualizations are presented to illustrate salient patterns and emerging thematic trends. A variety of statistics are reported to highlight key contributors and DKE papers that have made profound impacts.
Query length in best-match information retrieval (IR) systems is well known to be positively related to effectiveness in the IR task, when measured in experimental, non-interactive environments. However, in operational, interactive IR systems, query length is quite typically very short, on the order of two to three words. We report on a study which tested the effectiveness of a particular query elicitation technique in increasing initial searcher query length, and which tested the effectiveness of queries elicited using this technique, and the relationship in general between query length and search effectiveness in interactive IR. Results show that the specific technique results in longer queries than a standard query elicitation technique, that this technique is indeed usable, that the technique results in increased user satisfaction with the search, and that query length is positively correlated with user satisfaction with the search.
BackgroundChemotherapy is one of major therapeutic regimens for neuroblastoma (NB) in children. However, recurrence and metastasis associated with poor prognosis caused by acquired multidrug resistance remains a challenge. There is a great need to achieve new insight into the molecular mechanism of drug resistance in NB. The aim of this study is to identify novel drug sensitivity-related biomarkers as well as new therapeutic targets to overcome chemoresistance.MethodsWe proteome-wide quantitatively compared protein expression of two NB cell lines with different drug sensitivities, isolated from the same patient prior to and following chemotherapy. Annexin A2 (ANXA2) emerged as a key factor contributing to drug resistance in NB. Then, we assessed the correlation of ANXA2 expression and clinical characteristics using a tissue microarray. Further, the roles of ANXA2 in chemoresistance for NB and the underlying mechanisms were studied by using short hairpin RNA (shRNA) in vitro and vivo.ResultsFirst in total, over 6000 proteins were identified, and there were about 460 significantly regulated proteins which were up- or down-regulated by greater than two folds. We screened out ANXA2 which was upregulated by more than 12-fold in the chemoresistant NB cell line, and it might be involved in the drug resistance of NB. Then, using a tissue chip containing 42 clinical NB samples, we found that strong expression of ANXA2 was closely associated with advanced stage, greater number of chemotherapy cycles, tumor metastasis and poor prognosis. Following knockdown of ANXA2 in NB cell line SK-N-BE(2) using shRNA, we demonstrate enhanced drug sensitivity for doxorubicin (2.77-fold) and etoposide (7.87-fold) compared with control. Pro-apoptotic genes such as AIF and cleaved-PARP were upregulated. Inhibiting ANXA2 expression attenuated transcriptional activity of NF-κB via down-regulated nuclear translocation of subunit p50. Finally, simulated chemotherapy in a xenograft NB nude mouse model suggests that ANXA2 knockdown could improve clinical results in vivo.ConclusionOur profiling data provided a rich source for further study of the molecular mechanisms of acquired drug resistance in NB. Further study may determine the role of ANXA2 as a prognostic biomarker and a potential therapeutic target for patients with multidrug-resistant NB.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-017-0581-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.