There are no commonly-agreed mathematical models for the input-output relationship of underwater acoustic channels. For each path in a time-varying multipath channel within a short period of time (e.g., one short data block), this paper proposes to use one polynomial to approximate the amplitude variation and another polynomial up to the first order to approximate the delay variation within a block duration. Under such a channel parameterization, the discrete-time channel input- output relationship tailored to zero-padded orthogonal-frequency-division-multiplexing (OFDM) transmissions is then derived, based on which an OFDM receiver is validated using experimental data collected during the 2008 Surface Processes and Acoustic Communications Experiment. For channels with a short coherence time, the numerical results show that incorporating both the amplitude and delay variations improves the system performance.
We investigate the problem of localizing an underwater sensor node based on message broadcasting from multiple surface nodes. With the time-of-arrival measurements from a DSP-based multicarrier modem, each sensor node localizes itself based on the travel time differences among multiple senders to the receiver. Using one-way message passing, such a solution can scale to accommodate a large number of nodes in a network. We consider the issue from not only the physical layer, but also at the node processing layer by incorporating a tracking solution. We present simulation results, testing results in a swimming pool featuring both stationary and moving receivers, and results from a lake test with a mobile receiver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.