Achieving accurate navigation and localization is crucial for Autonomous Underwater Vehicle (AUV). Traditional navigation algorithms, such as Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF), require the system model and measurement model for state estimation to obtain the AUV position. However, this may introduce modeling errors and state estimation errors which will affect the final precision of AUV navigation system to a certain extent. To avoid these problems, in this paper, we proposed a deep framework-NavNet-by taking AUV navigation as a deep sequential learning problem. Firstly, the proposed NavNet can take raw sensor data at different frequencies as input, which benefits from the sequential learning capability of Recurrent Neural Network (RNN). Secondly, NavNet takes advantage of a simplified attention mechanism and Fully Connected (FC) layers to output AUV displacements per unit time, which accomplishes low-frequency AUV navigation by accumulation of it. More importantly, there is no need for the model building and state estimation with NavNet, which avoids the import of relevant errors. We compare the performance of NavNet to EKF and UKF using collected data by running Sailfish in the sea. Experimental results show that NavNet has an excellent performance in terms of both the navigation accuracy and fault tolerance. In addition, a reliable fusion strategy of NavNet and conventional method is applied to achieve high-frequency AUV navigation. The experimental results show that the proposed architecture can be a reliable supplement to limit the error growth of conventional algorithms. INDEX TERMS Autonomous underwater vehicle, navigation, extended Kalman filter, unscented Kalman filter, sequential learning.
The control issue of Autonomous Underwater Vehicles (AUV) is very challenging since the precise mathematical model of AUV is hard to establish due to its strong coupling and time-varying features. Meanwhile, AUV movement is easily interfered with by ocean currents and waves, causing anti-interference performance of traditional Proportional-Integral-Derivative (PID) control to be unsatisfactory. Aiming to solve those problems, an algorithm of fuzzy optimized model-free adaptive control (MFAC) based on auto-disturbance rejection control (ADRC) was proposed and used in AUV heading control. The MFAC is used to overcome the difficulty with establishing a precise mathematical model, and the ADRC is introduced to handle the interference of currents and waves. In this paper, MFAC and ADRC are combined. First, the MFAC is performed based only on the I/O data of the controlled object, which is simple to implement with low calculation complexity and strong robustness. Then, a tracking differentiator (TD) is employed to track the input signal to overcome the antinomy of rapidity and hypertonicity in MFAC. After that, an extended-state observer (ESO) is added to control the variables of MFAC to estimate all the disturbances, which can greatly improve the anti-interference ability of the system. Due to the complexity and diversity of the marine environment, a fuzzy optimized MFAC based on ADRC is proposed to improve the adaptability of AUV to the marine environment. Simulations and experiments were carried out to verify the control effect of this algorithm in complex sea conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.