Arthrospira (Spirulina) platensis as a representative species of cyanobacteria has been recognized and used worldwide as a source of protein in the food, which possesses some unusual and valuable physiological characteristics, such as alkali and salt tolerance. Based on complete genome sequencing of Arthrospira (Spirulina) plantensis-YZ, we compared the protein expression profiles of this organism under different salt-stress conditions (i.e. 0.02 M, 0.5 M and 1.0 M NaCl, respectively), using 2-D electrophoresis and peptide mass fingerprinting, and retrieved 141 proteins showing significantly differential expression in response to salt-stress. Of the 141 proteins, 114 Arthrospira (Spirulina) plantensis-YZ proteins were found with significant homology to those found in Arthrospira (76 proteins in Arthrospira platensis str. Paraca and 38 in Arthrospira maxima CS-328). The remaining 27 proteins belong to other bacteria. Subsequently, we determined the transcriptional level of 29 genes in vivo in response to NaCl treatments and verified them by qRT-PCR. We found that 12 genes keep consistency at both transcription and protein levels, and transcription of all of them but one were up-regulated. We classified the 141 differentially expressed proteins into 18 types of function categories using COG database, and linked them to their respective KEGG metabolism pathways. These proteins are involved in 31 metabolism pathways, such as photosynthesis, glucose metabolism, cysteine and methionine metabolism, lysine synthesis, fatty acid metabolism, glutathione metabolism. Additionally, the SRPs, heat shock protein and ABC transporter proteins were identified, which probably render Arthrospira (Spirulina) plantensis’s resistance against high salt stress.
It is worldwide accepted that lncRNA PTCSC3 is a tumor suppressor in glioma and thyroid cancer, whereas its role in the recurrence of gastric cancer is unknown. Patients and Methods: We recruited 80 GC patients (46 males and 34 females, 44 to 68 years, 56.3±6.7 years) in our study. Two human GC cell lines AGS and SNU-1 were transfected with PTCSC3 and HOXA11-AS expression vectors. Then, qPCR was used to detect the level of relative mRNA. Both invasion and migration assays were performed to detect the effect of the lncRNA on gastric cancer cell motility. Results: In the present study, we showed that PTCSC3 was downregulated in plasma of gastric cancer patients than in plasma of healthy controls. Follow-up study indicated that PTCSC3 was further downregulated in patients with distant-recurrence but not in patients with local recurrence only or non-recurrence. LncRNA HOXA11-AS was upregulated in plasma of gastric cancer cells than in plasma of healthy controls and was inversely correlated with PTCSC3 in plasma of gastric cancer patients. PTCSC3 overexpression mediated the downregulation of HOXA11-AS in gastric cancer cells, while HOXA11-AS overexpression failed to significantly affect PTCSC3. PTCSC3 overexpression led to inhibited, while HOXA11-AS overexpression led to promoted migration and invasion of gastric cancer cells. In addition, HOXA11-AS overexpression reduced the effects of PTCSC3 overexpression. Discussion: Therefore, lncRNA PTCSC3 alleviates in the postoperative distant recurrence of gastric cancer possible by suppression of HOXA11-AS.
Infection of Mycobacterium tuberculosis (MTB) and nontuberculous mycobacteria (NTM) challenges effective pulmonary infectious disease control. Current phenotypic and molecular assays could not comprehensively and accurately diagnose MTB, NTM, and drug resistance. Next-generation sequencing allows an “all-in-one” approach providing results on expected drug susceptibility testing (DST) and the genotype of NTM strains. In this study, targeted capture sequencing was used to analyze the genetic backgrounds of 4 MTB strains and 32 NTM pathogenic strains in 30 clinical samples, including 14 sputum specimens and 16 bronchoalveolar lavage fluid samples. Through comparing with other TB diagnostic tests, we proved that targeted capture sequencing could be used as a highly sensitive (91.3%) and accurate (83.3%) method to diagnose TB, as well as MGIT 960. Also, we identified 7 NTM strains in 11 patients; among them, seven patients were MTB/NTM co-affected, which indicated that it was a meaningful tool for the diagnosis and treatment of NTM infection diseases in clinic. However, based on a drug-resistant mutation library (1,325 drug resistance loci), only 9 drug resistance strains and 22 drug resistance loci were discovered, having considerable discordance with the drug-resistant results of MGIT 960. Our finding indicated that targeted capture sequencing approach was applicable for the comprehensive and accurate diagnosis of MTB and NTM. However, from data presented here, the DST results identified by next-generation sequencing (NGS) showed a relatively low consistency with MGIT 960, especially in sputum samples. Further work should be done to explore the reasons for low drug-resistance detection rate of NGS.
microRNAs (miRNAs) are endogenous noncoding small RNAs (sRNA) that play important regulatory functions in growth, development, and environmental stress response of eukaryotes. Currently, miRNA-size sRNA (msRNAs) was discovered in several prokaryotes through deep sequencing. However, no data are available on whether msRNAs exist in cyanobacteria and whether they regulate biological tolerance to salt stress. In this study, three small RNA libraries were constructed from control (0.02 M NaCl), medium-(0.3 M NaCl), and high-salt treatments (0.5 M NaCl) of Spirulina platensis. After sequencing using a high-throughput Illumina Solexa system, nine msRNAs with msRNA* were identified, and 21 candidate msRNAs showed significantly differential expression under saltstress conditions. Seven of the selected msRNAs presented the consistent expression trends when compared with their deep sequencing results as verified by quantitative real-time polymerase chain reaction (qRT-PCR), demonstrating that the expression analyses for msRNAs according to small RNA sequencing data were reliable. Through computational identification, 33 target genes were predicted for 12 msRNAs in S. platensis; Gene Ontology (GO) and KEGG enrichment analyses revealed that the putative target genes were grouped into the categories of proteolysis, protein homotrimerization, glycosylation, ubiquinone biosynthetic process, DNA restriction-modification system, and polysaccharide catabolic process. Using proteomic analysis, two target proteins (glyceraldehyde-3-phosphate dehydrogenase and forkhead-associated (FHA) domain-containing protein) were differentially expressed under salt-stress conditions, which might be regulated by msRNAs. Our study demonstrates that msRNAs exist in S. platensis, and these msRNAs may have an important role in salt-stress responses; however, their functional significance requires further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.