Molecular circuits and devices with temporal signal processing capability are of great significance for the analysis of complex biological processes. Mapping temporal inputs to binary messages is a process of history-dependent signal responses, which can help understand the signal-processing behavior of organisms. Here, we propose a DNA temporal logic circuit based on DNA strand displacement reactions, which can map temporally ordered inputs to corresponding binary message outputs. The presence or absence of the output signal is determined by the type of substrate reaction with the input so that different orders of inputs correspond to different binary outputs. We demonstrate that a circuit can be generalized to more complex temporal logic circuits by increasing or decreasing the number of substrates or inputs. We also show that our circuit had excellent responsiveness to temporally ordered inputs, flexibility, and expansibility in the case of symmetrically encrypted communications. We envision that our scheme can provide some new ideas for future molecular encryption, information processing, and neural networks.
We constructed pH-responsive logic gates through substrate conformational change that uses two types of logic calculations, ‘AND’ and ‘OR’. Our logic gates necessitate fewer substrates when two types of logic calculations are needed.
Living organisms can produce corresponding functions by responding to external and internal stimuli, and this irritability plays a pivotal role in nature. Inspired by such natural temporal responses, the development and design of nanodevices with the ability to process time-related information could facilitate the development of molecular information processing systems. Here, we proposed a DNA finite-state machine that can dynamically respond to sequential stimuli signals. To build this state machine, a programmable allosteric strategy of DNAzyme was developed. This strategy performs the programmable control of DNAzyme conformation using a reconfigurable DNA hairpin. Based on this strategy, we first implemented a finite-state machine with two states. Through the modular design of the strategy, we further realized the finite-state machine with five states. The DNA finite-state machine endows molecular information systems with the ability of reversible logic control and order detection, which can be extended to more complex DNA computing and nanomachines to promote the development of dynamic nanotechnology.
The construction of DNA reaction networks with complex functions using various methods has been an important research topic in recent years. Whether the DNA reaction network can perform complex tasks and be recycled directly affects the performance of the reaction network. Therefore, it is very important to design and implement a DNA reaction network capable of multiple tasks and reversible regulation. In this paper, the hairpin allosteric method was used to complete the assembly task of different functional nucleic acids. In addition, information conversion of the network was realized. In this network, multiple hairpins were assembled into nucleic acid structures with different functions to achieve different output information through the cyclic use of trigger strands. A method of single-input dual-output information conversion was proposed. Finally, the network with signal amplification and reversible regulation was constructed. In this study, the reversible regulation of different functional nucleic acids in the same network was realized, which shows the potential of this network in terms of programmability and provides new ideas for constructing complex and multifunctional DNA reaction networks.
With the advent of nanotechnology, DNA molecules have been transformed from solely genetic information carriers to multifunctional materials, showing a tremendous potential for drug delivery and disease diagnosis. In drug delivery systems, DNA is used as a building material to construct drug carriers through a variety of DNA self-assembly methods, which can integrate multiple functions to complete in vivo and in situ tasks. In this study, ladder-shaped drug carriers are developed for drug delivery on the basis of a DNA nanoladder. We first demonstrate the overall structure of the nanoladder, in which a nick is added into each rung of the nanoladder to endow the nanoladder with the ability to incorporate a drug loading site. The structure is designed to counteract the decrement of stability caused by the nick and investigated in different conditions to gain insight into the properties of the nicked DNA nanoladders. As a proof of concept, we fix the biotin in every other nick as a loading site and assemble the protein (streptavidin) on the loading site to demonstrate the feasibility of the drug-carrying function. The protein can be fixed stably and can be extended to different biological and chemical drugs by altering the drug loading site. We believe this design approach will be a novel addition to the toolbox of DNA nanotechnology, and it will be useful for versatile applications such as in bioimaging, biosensing, and targeted therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.