Fragile X syndrome results from the absence of the RNA binding FMR protein. Here, mRNA was coimmunoprecipitated with the FMRP ribonucleoprotein complex and used to interrogate microarrays. We identified 432 associated mRNAs from mouse brain. Quantitative RT-PCR confirmed some to be >60-fold enriched in the immunoprecipitant. In parallel studies, mRNAs from polyribosomes of fragile X cells were used to probe microarrays. Despite equivalent cytoplasmic abundance, 251 mRNAs had an abnormal polyribosome profile in the absence of FMRP. Although this represents <2% of the total messages, 50% of the coimmunoprecipitated mRNAs with expressed human orthologs were found in this group. Nearly 70% of those transcripts found in both studies contain a G quartet structure, demonstrated as an in vitro FMRP target. We conclude that translational dysregulation of mRNAs normally associated with FMRP may be the proximal cause of fragile X syndrome, and we identify candidate genes relevant to this phenotype.
The inclination angle between the base normal and the helix axis is measured for ribo-AU polymers by using flow linear dichroism (LD), and compared to measurements for deoxyribo-AT polymers under dehydrating conditions. The CD of the DNA polymers under the dehydrating conditions is not the same as the corresponding RNA polymers, which are presumed to be in the A form. However, the LD indicates that poly(dAdT)-poly(dAdT) can assume the A form in 80% 2,2,2-trifluoroethanol, although poly(dA)-poly(dT) retains B form structure in this dehydrating solvent. The inclination angles are similar for B form poly(dAdT)-poly(dAdT) and poly(dA)-poly(dT), and these parameters are also similar for A form poly(rArU)-poly(rArU) and poly(rA)-poly(rU). All inclination axes are similar.
The inclination angle between the base normal and the helix axis, and the axes around which the bases incline, are measured for ribo-GC polymers in buffer by using flow linear dichroism (LD), and compared to measurements for deoxyribo-GC polymers in buffer and under dehydrating conditions. A new method is designed to synthesize poly(rGrC)-poly(rGrC), which is not available commercially, in large quantities. The LD of this RNA reveals inclination angles that are similar to the B-form DNA in buffer, although the axes are different. The CD of poly(dGdC)-poly(dGdC) under the dehydrating conditions is similar to poly(rGrC)-poly(rGrC), indicating it is in the A form, and the LD gives larger inclination angles than either the B form or the corresponding RNA. Poly(dG)-poly(dC) is in the A form in buffer. Comparison among poly(rG)-poly(rC) in buffer, and poly(dG)-poly(dC) in buffer under dehydrating conditions, reveals similar inclination angles and axes, although the LD shows that the DNA has the largest inclination angles. Except for poly(rGrC)-poly(rGrC), which has a unique reduced dichroism, all the axes for G are similar, as are the axes for C.
SYNOPSISThe Z-form of poly(dG-m5dC)~poly(dG-m5dC) in 85% ethanol/MOPS and the Z-form poly ( rG-rC ) . poly ( rG-rC) in 4.8 M NaClO,, 20% ethanol are studied by flow linear dichroism. Simultaneous analysis of the isotropic absorption and linear dichroism data yields the angle of inclination of the base normal relative to the helix axis, and the orientation of the axis around which the bases incline. For the Z-form of poly(dGm5dC) .poly(dG-m5dC) the inclination angles are 31.3" for guanine, and 27.9" for cytosine; for the Z-form of poly(rG-rC).poly(rG-rC) they are 25.0" for guanine, and 23.3" for cytosine. The inclination angles for the Z-form DNA are similar to those for the Zform, and the angles for Z-form RNA are somewhat smaller. The axes of inclination for guanine and cytosine are similar in all three left-handed forms. 0 1995 John Wiley & Sons, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.