Background Genetic and functional genomics studies require a high-quality genome assembly. Tomato (Solanum lycopersicum), an important horticultural crop, is an ideal model species for the study of fruit development. Results Here, we assembled an updated reference genome of S. lycopersicum cv. Heinz 1706 that was 799.09 Mb in length, containing 34,384 predicted protein-coding genes and 65.66% repetitive sequences. By comparing the genomes of S. lycopersicum and S. pimpinellifolium LA2093, we found a large number of genomic fragments probably associated with human selection, which may have had crucial roles in the domestication of tomato. We also used a recombinant inbred line (RIL) population to generate a high-density genetic map with high resolution and accuracy. Using these resources, we identified a number of candidate genes that were likely to be related to important agronomic traits in tomato. Conclusion Our results offer opportunities for understanding the evolution of the tomato genome and will facilitate the study of genetic mechanisms in tomato biology.
Tomato (Solanum lycopersicum) fruit weight (FW), soluble solid content (SSC), fruit shape and fruit color are crucial for yield, quality and consumer acceptability. In this study, a 192 accessions tomato association panel comprising a mixture of wild species, cherry tomato, landraces, and modern varieties collected worldwide was genotyped with 547 InDel markers evenly distributed on 12 chromosomes and scored for FW, SSC, fruit shape index (FSI), and color parameters over 2 years with three replications each year. The association panel was sorted into two subpopulations. Linkage disequilibrium ranged from 3.0 to 47.2 Mb across 12 chromosomes. A set of 102 markers significantly (p < 1.19–1.30 × 10−4) associated with SSC, FW, fruit shape, and fruit color was identified on 11 of the 12 chromosomes using a mixed linear model. The associations were compared with the known gene/QTLs for the same traits. Genetic analysis using F2 populations detected 14 and 4 markers significantly (p < 0.05) associated with SSC and FW, respectively. Some loci were commonly detected by both association and linkage analysis. Particularly, one novel locus for FW on chromosome 4 detected by association analysis was also identified in F2 populations. The results demonstrated that association mapping using limited number of InDel markers and a relatively small population could not only complement and enhance previous QTL information, but also identify novel loci for marker-assisted selection of fruit traits in tomato.
Background Long-term domestication and intensive breeding of crop plants aim to establish traits desirable for human needs, and characteristics related to yield, disease resistance, and postharvest storage have traditionally received considerable attention. These processes have led also to negative consequences, as is the case of loss of variants controlling fruit quality, for instance in tomato. Tomato fruit quality is directly associated to metabolite content profiles; however, a full understanding of the genetics affecting metabolite content during tomato domestication and improvement has not been reached due to limitations of the single detection methods previously employed. Here, we aim to reach a broad understanding of changes in metabolite content using a genome-wide association study (GWAS) with eigenvector decomposition (EigenGWAS) on tomato accessions. Results An EigenGWAS was performed on 331 tomato accessions using the first eigenvector generated from the genomic data as a “phenotype” to understand the changes in fruit metabolite content during breeding. Two independent gene sets were identified that affected fruit metabolites during domestication and improvement in consumer-preferred tomatoes. Furthermore, 57 candidate genes related to polyphenol and polyamine biosynthesis were discovered, and a major candidate gene chlorogenate: glucarate caffeoyltransferase (SlCGT) was identified, which affected the quality and diseases resistance of tomato fruit, revealing the domestication mechanism of polyphenols. Conclusions We identified gene sets that contributed to consumer liking during domestication and improvement of tomato. Our study reports novel evidence of selective sweeps and key metabolites controlled by multiple genes, increasing our understanding of the mechanisms of metabolites variation during those processes. It also supports a polygenic selection model for the application of tomato breeding.
The developmental plasticity of the maize inflorescence depends on meristems, which directly affect reproductive potential and yield. However, the molecular roles of upper floral meristem (UFM) and lower floral meristem (LFM) in inflorescence and kernel development have not been fully elucidated. In this study, we characterized the reversed kernel1 (rk1) novel mutant, which contains kernels with giant embryos but shows normal vegetative growth like the wild type (WT). Total RNA was extracted from the inflorescence at three stages for transcriptomic analysis. A total of 250.16-Gb clean reads were generated, and 26,248 unigenes were assembled and annotated. Gene ontology analyses of differentially expressed genes (DEGs) detected in the sexual organ formation stage revealed that cell differentiation, organ development, phytohormonal responses and carbohydrate metabolism were enriched. The DEGs associated with the regulation of phytohormone levels and signaling were mainly expressed, including auxin (IAA), jasmonic acid (JA), gibberellins (GA), and abscisic acid (ABA). The transcriptome, hormone evaluation and immunohistochemistry observation revealed that phytohormone homeostasis were affected in rk1. BSA-Seq and transcriptomic analysis also provide candidate genes to regulate UFM and LFM development. These results provide novel insights for understanding the regulatory mechanism of UFM and LFM development in maize and other plants.
Background Cucumber is an important melon crop in the world, with different pericarp colors. However, the candidate genes and the underlying genetic mechanism for such an important trait in cucumber are unknown. In this study, a locus controlling pericarp color was found on chromosome 3 of cucumber genome. Results In this study, the light green inbred line G35 and the dark green inbred line Q51 were crossed to produce one F2 population. Consequently, we identified a major locus CsPC1 (Pericarp color 1). Next, we mapped the CsPC1 locus to a 94-kb region chromosome 3 which contains 15 genes. Among these genes, Csa3G912920, which encodes a GATA transcription factor, was expressed at a higher level in the pericarp of the NIL-1334 line (with light-green pericarp) than in that of the NIL-1325 line (with dark-green pericarp). This study provides a new allele for the improvement of cucumber pericarp color. Conclusion A major QTL that controls pericarp color in cucumber, CsPC1, was identified in a 94-kb region that harbors the strong candidate gene CsGATA1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.